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Final Report
ONR Contract Number N00014-88-K-0475

Extension of On-Surface Radiation Condition (OSRC) Tlieory
to Full-Vector Electromagnetic Wave Scattering by Three-
Dimensional Conducting, Dielectric, and Coated Targets

This document provides a concise final report of technical progress and accomplishments for
ONR Contract NOOO14-88-K-0475. The format is a narrative description of the research followed
by a compilation of reproductions of jourr:al articles resulting in wiole or in part from this funding.

Research Accomplishments- OSRC
1. We completed the OSRC analysis of TM scattering by PEC wedges of arbitrary angle,

showing that the proper current singularity at the edge (and associated scattering effects) naturally
arises out of the Bayliss-Turkel B, operator.

2. We applied B, OSRC to analyze full-vector EM scattering by a PEC sphere using radial
potentials, and obtained excellent agreement with the exact solution.

3. We applied B, OSRC to PEC bodies of revolution, in one case applying B; to surface
potentials, and in the other case applying B, directly to the surface E and H fields.

4. We applicd the Rayleigh hypothesis and high-frequency asymptotic analyses to the PEC wedge
and the cavity-backed aperture to develop an understanding of the differences between these
approaches and OSRC.

5. We applied B3 and B, OSRC 10 analyze full-vector EM scattering by a PEC sphere, and found
monotonic improvement in the accuracy of the computed surface currents at all points along the
surface, especially the shadow region, as the order of the radiation boundary operator increased
from. 20310 4.

An important direct result of this ONR-sponsored research is that our publications sparked
interest in radiation boundary condition (RBC) and absorbing boundary condition (ABC) theory in
the engineering electromagnetics community. As late as the publication of our first OSRC paper in
1987, this community was unaware of the importance of RBC and ABC theory and applications,
and unaware of the existence of a substantial body of work on these topics in the applied
mathematics literature. Since 1987, the number of RBC and ABC papers published at international
engineering electromagnetics symposia (and in related journals) has risen from a level of zero to a
level today where special sessions on RBC/ABC theory and applications are routinely held, and the
lopic is absolutely mainstream. R
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1. We completed (in 2-D) the formulation and testing of our new spatial decomposition technique
for MoM, a unique analytical approach that retains the fundamental basis, accuracy, and robustness
of MoM, but profoundly reduces the required computer memory and running time.

2. We constructed the world's largest 3-D finite-difference time-domain (FD-TD) computational
electromagnetics models. The first was an FD-TD model of a 30-A, U-shaped jet engine inlet,
having 25-million vector field unknowns. We solved this problem in only 3 minutes, 40 seconds
on a Cray Y-MP/8, achieving the fastest computational rate (1.6 GFlops) and highest degree of
Cray-processor concurrency (7.97/8) attained for such a model up to the date of publication. We
later extended our FD-TD modeling to a complete fighter aircraft, the General Dynamics/Lockheed
VFY-218, at illumination frequencies from 100 MHz to 500 MHz. Currently, our 3-D FD-TD
codes can solve for up to 500-million vector field unknowns (in core) when implemented on the
Cray M-90 supercomputer. Peak processing rates on the Cray C90 are at about 10 GFlops.

3. Using FD-TD, we completed the first grid-based analyses of radiation by 2-D and 3-D hom
antennas and hom-fed parabolic dishes, and demonstrated high modeling accuracy.

4. We completed a patient-specific EM hyperthermia model for cancer treatment, using artificial
intelligence techniques to semi-automatically process computed tomography (CT) images of
patients, thereby assembling a 3-D biological tissue dielectric medium data base for FD-TD EM
analysis on the Cray. Using FD-TD, we completed the first grid-based Maxwell's equations
models of optical imaging and holography for diffraction-limited structures.

5. We made a significant advance in computational physics that permits for the first time the
numerical modeling of the operation of femtosecond optical devices directly from the full-vector
nonlinear Maxwell's equations. Here, we learned how to rigorously incorporate linear and
nonlinear dispersion -- the key optical physics of glass and semiconductor optical materials -- into
the FD-TD direct time integration of Maxwell's equations. W= Lhtained for the first time direct
Maxwell's equations models of temporal solitons in 1-D and 2-D, spatial solitons in 2-D, and
mutual deflection of spatial solitons in 2-D (light switching light). Our models can treat
engineering features in optical microchips down to the 10-nanometer distance scale, incorporating
such quantum effects as Kerr nonlinearity, Raman interactions, and two-photon absorption.

An important direct result of these aspects of our ONR-sponsored research is that our
publications sparked interest in FD-1D and related grid-based Maxwell’s equations solvers in the
engineering electromagnetics co.nmunity. As late as the publication of our Wave Motjon review
paper in 1988, this community was largely unaware of the power of such solvers in the context of
the emergence of capable supercomputers, and largely unaware of the existence of a substantial
body of work on these topics in the computational fluid dynamics literature. Since 1988, the
number of FD-TD and related finite-element and finite-volume papers published at international
engineenng electromagnetics symposia and in related journals has risen from a level of less than 10
per year (published primarily by my group) to a level today where a single conference (for
example, both the 1992 and 1993 IEEE Intemational Antcanas and Propagation Socicty Symposia)
has more than 90 presented by research teams worldwide. We hope that our new nonlinear
Maxwell's equations FD-TD work will have eventually have a similar impact upon the worldwide
nonlinear optics community.
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a.

Number of Papers Submitted to Refereed Journals but not yet published: 4

Number of Papers Published in Referced Joumals: 25 (reproduced in this report in Appendix A)

1.

G. A. Kriegsmann, A. Taflove and K. R. Umashankar, "A new formulation of electromagnetic wave
scattering using an on-surface radiation boundary condition approach,” [EEE Trans, Antennas and
Propagation, vol. 35, Feb. 1987, pp. 153-161. (See pp. Al - A9 of this report.)

NOTE: This paper was published before the award of this ONR contract. However, because it launched
the entire topic of RBC, ABC, and OSRC theory in the engineering elecuomagnetics community. it is
important to use it to lead off the publications list.

T. G. Moore, G. A. Kriegsmann and A. Taflove, "An application of the WKBJ technique to the on-surface

radiation condition,” IEEE Trans, Antennas and Propagation, vol. 36, Sept, 1988, pp. 1329-1331. (See pp.
A10 - A12 of this report.)

T. G. Moore, J. G. Blaschak, A. Taflove and G. A. Kriegsmann, "Theory and application of radiation
boundary operators,” invited review paper., [EEE Trans. Antennas and Propagaiiop, vol. 36, Dec. 1988,
pp. 1797-1812. (See pp. A13 - A28 of this report.)

A. Taflove, "Review of the formulation and applications of the finite-difference time-domain method for
numerical modeling of electromagnetic wave interactions with arbitrary structures,” invited paper,
Wave Motiop, vol. 10, Dec. 1988, pp. 547-582. (Sce pp. A29 - A64 of this report.)




S. F. A. Harfoush, A. Taflove and G. A. Kriegsmann, "A numerical technique for analyzing electromagnetic
wave scattering from moving surfaces,” [EEE Trans, Antennas and Propagation, vol. 37, Jan. 1989,
pp. 55-63. (See pp. A6S - A73 of this report.) ®

6. J.G.Blaschak, G. A. Kriegsmann and A. Taflove, "A study of wave interactions with flanged waveguides
and cavilies using the on-surface radiation condition method,"” Waye Motion, vol. 11, March 1989,

pp. 65-76. (See pp. A74 - A8S of this report.)

7. A.Taflove and K. R. Unashankar, "Review of FD-TD numerical modeling of electromagnetic wave o
scattering and radar cross section,” invited paper, Proc, IEEE, vol. 77 (Special Issue on Radar Cross Section
of Complex Objects), May 1989, pp. 682-699. (See pp. A86 - A103 of this report.)

8. A.Taflove and K. R. Umashankar, "The finite-difference time-domain method for numerical modeling of
electromagnetic scattering,” invited paper, [EEE Trans. Magnetics, vol. 25 (Special Issue on Field
Computation), July 1989, pp. 3086-3091. (See pp. A104 - A109 of this report.) ®

9. A.T. Perlik, A. Taflove and T. Opsahl, "Predicting scattering of electromagnetic fields using FD-TD on a
Connection Machine,” IEEE Trans, Magngtics, vol. 25 (Special Issue on Field Computation), July 1989,

pp. 2910-2912. (See pp. A110 - Al112 of this report.)

10. B. Beker, K. R. Umashankar and A. Taflove, "Numerical analysis and validation of the combined-field PY
surface integral equations for elecromagnetic scattering by arbitrary shaped two-dimensional anisotropic
objects,” IEEE Trans. Antennas and Propagation, vol. 37, Dec. 1989, pp. 1573-1581. (See pp. A113 -
A121 of this report.)

11. A. Taflove and K. R. Umashankar, "The finite-difference time-domain metbod for numerical modeling of
electromagnetic wave interactions,” invited paper, Electromagnetics, vol. 10 (Special Issue on Three-
Dimensional Electromagnetic Computation), Jan. - June 1990, pp. 105-126. (See pp. A122 - A133 of this ®
report.)

12. M. A. Strickel and A. Taflove, "Time-domain synthesis of broadband absorptive coatings for (wo-

dimensional conducting targets,” [EEE Trans. Aniennas and Propagation, vol. 38, July 1990,
pp. 1084-1091. (See pp. A134 - Al41 of this report.)

13. F. A. Harfousb, G. A. Kriegsmann and A. Taflove, "Numerical implementation of relativistic

electromagnetc field boundary conditions in a laboratory-frame grid,” L Computational Physics, vol. 89,
July 1990, pp. 80-94. (See pp. A142 - A149 of this report.)

14. S. Arendt, K. R. Umashankar, A. Taflove and G. A. Kriegsmann, "Extension of on-surface radiation PY
condition theory (o scattering by two-dimensional homogeneous dielectric objects,” [EEE Trans. Antepnas
and Propagation, vol. 38, Oct 1990, pp. 1551-1558. (See pp. A150 - A157 of this report.)

15. F. A. Harfousb and A. Taflove, "Scattering of elecromagnetic waves by a material half-space with a time-

varying conductivity,” [EEE Trans, Antennas and Propagation, vol. 39, July 1991, pp. 898-906. (See pp.
Al162 - A170 of this report.)

16. D. §. Kaiz, M. J. Piket-May, A. Taflove and K. R. Umashankar, "FD-TD analysis of electromagnetic wave

radiation from systems containing bom antennas,” [EEE Traps, Antennas and Propagation, vol. 39, August
1991, pp. 1203-1212. (See pp. A171 - A180 of this report.)

17. R. M. Joseph, S. C. Hagness and A. Taflove, "Direct time integration of Maxwell's equations in linear
dispersive media with absorption for scattering and propagation of femtosecond elecromagnetic pulses,”
Onptics Letters, 16, Sept. 15, 1991, pp. 1412-1414. (See pp. A181 - A183 of this report.)




18.

19.

20.

21.

22.

23.

24.

25.

K. R. Umashankar, W. Chun, and A. Taflove, "Simple analytical solution to electromagnetic scattering by
two-dimensional conducting objects with edges and comers. Part [ - TM polarization,” [EEE Trans,
Antennas and Propagation. 39, December 1991, pp. 1665-1671. (See pp. A184 - A190 of this report.)

P. M. Goorjian and A. Taflove, "Direct time integration of Maxwell's equations in nonlinear dispersive
media for propagation and scattering of femtosecond electromagaetic solitons,” Qptics Latters, 17, Feb. 1,

1992, pp. 180-182. (See pp. A191 - A193 of this report.)

M. J. Piket-May, A. Taflove, W. - C. Lin, D. 8. Katz, V. Sathiaseelan, and B. B. Miual, "Initial results
for automaled computational modeling of patient-specific electromagnetic hyperthermia,” [EEE Trans.

Biomedical Engineering. 39. March 1992, pp. 226-237. (See pp. A194 - A20S of this report.)

T. G. Jurgens, A. Taflove, K. R. Umashankar, and T. G. Moore, "Finitc-difterence time-domain modelling

of curved surfaces,” [EEE Trans. Antconas and Propagation. 40, April 1992, pp. 357-366. (See pp. A206 -
A21S5 of this report.)

K. R. Umashankar, S. Nimmagadda, and A. Taflove, "Numerical analysis of electromagnetic scatiering by

electrically large objects using spatial decomposition technique.” [EEE Trans, Antennas and Propagation,
40, August 1992, pp. 867-877. (See pp. A216 - A226 of this report.)

P. M. Goorjian, A. Taflove, R. M. Joseph, and S. C. Hagness, "Computational modeling of femtosecond
optical solitons from Maxwell's equations,” [EEE 1. Quantum Electronics, 28, October 1992, pp. 2416-
2422. (See pp. A227 - A233 of this report.)

A. Taflove, "Re-inventing electmmagneucs superccmpuling solution of Maxwell's equations via direct

time integration on space grids,” Computing Systems in Engineering, vol. 3 (Special Issue on High-
Performance Computing for Flight Vebicles), Dec. 1992, pp. 153-168. (See pp. A234 - A249 of this

report.)

M. J. Piket-May, A, Taflove and J. B. Troy, "Electrodynamics of visible-light interactions with the
vertebrate retinal rod,” Qplics Letters, 18, April 15, 1993, pp. 568-570. (See pp. A250 - A252 of this

report.)

Number of Books or Chapters Submitted but not yet Published: 2

Number of Books or Chapters Published: 3, as follows-

1.

A. Taflove and K. R. Umashankar, "The finite-difference time-domain method for numerical modeling of

electromagncuc wave interactions wnh arbmary structures,” Chapccr 8in WW&
: - ; autering, M. A. Morgan,

ed., J. A. Kong, chief ed., Elsevner 1990,

A. Taflove and K. R. Umasbankar, "Review of FD-TD numerical modeling of electromagnetic wave

scattering and radar cross section,” in Radar Cross Sections of Complex Objects, W. R. Sione, ed.. [EEE

Press, Nev: York, 1990,

A. Taflcve, "State of the art and future directions in (‘mne-dlft'erence and related techniques in
supercomputing computational electromagnetics,” in Directions in Fleciromagnetic Wave Modeling, H. L.

Bertoni and L. B. Felsen, eds., Plenum, 1991.




Number of Printed Technical Reports and Mon-Refereed Papers: 3, as follows-

1. D.S. Katz, A. Taflove, J. P. Brooks and E. Harrigan, "Large-scale methods in computational
electromagnetics,” Cray Channels. Spring 1991, pp. 16-19. (See pp. A158 - A161 of this report.)

2. ED-ID Compuiational Modeling of Yivaldi Flare Antennas, Final Report to Northrop Defense Systems
Division, Rolling Meadows, IL, July 1992,

Course Notes for IEEE

CCLOIINAS
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Antennas and Propagation Society Short Course, Chicago, IL, July 1992

Major Computer Software Contribution: 1, as follows-
1. Cray Research proprietary user-friendly, CAD-based FD-TD electromagnetic wave interaction software,
EMDS, which is capable of conformal surface modeling of entire fighter-sized aircraft for radar cross section

up to 1 - 2 GHz. Released for beta testing in Sept. 1992, EMDS is a joint development of Cray Research.
A. Taflove, and his students. No govemment funding is involved.

Number of Patents Filed: 0

Number of Patents Granted: 0

Number of Invited Presentations at Workshops or Professional Society Meetings: 31, listed as follows-
1. "Computational electromagnetics,” Lockbeed Aeronautical Systems Co., Burbank, CA, Sept 1989.

2. "Applications of supercomputing computational elecromagnetics,” [llinois Institute of Technology EECS
Department, Chicago, IL, Oct. 1989.

3. "Supercompuling computational electromagnetics,” DARPA, Arlington, VA (on behalf of the DOD EM
Computer Code Consortium), Nov. 1989,

4. "Computational electromagnetics,” (all-day seminas), U. S. Naval Weapons Center, China Lake, CA,
Jan. 1990,

5. "Time-dumain solutions in computational electromagnctics using finite-difference and finite-volume
methods,” Ulra-Wideband Radar Symposium, Los Alamos National Laboratory, March 1990.

6. "State of supercomputing computational electromagnelics for scattering and radar cross section,” U.S.
Department of Defense, Crystal City, D.C., April 1990.

7. "The role of analysis in an age of computers: View from the numerical side,” Special Session on the Role
of Analysis in an Age of Computers (Leo Felsen, Chairman), [EEE 1990 AP-S International Meeting,
Dallas, TX, May 1990.

8. "Software validauon for FD-TD,” Code Validation Workshop (Ed Miller. Chairman), IEEE 1990 AP-S
Intemnational Meeting, Dallas, TX, May 1990.

9. "Preparation for careers in scicnce and engincering:  High school college, and graduate school,” Midwest
Talent Search, Northwestem University Dept. of Education, Evanston, IL, May 1990.




10. "From B-2 bombers to very high speed integrated circuits and beyond: Supercomputing computational
® electromagnetics in the 1990's,” given to John Rollwagen, Chairman and Chief Executive Officer, Cray
Research, Inc., Minneapolis, Minp., June 1990.

11. "State of the art and future directions in finite-difference and related techniques in supercomputing
computational electromagnetics,” International Conference on Directions in Electromagnetic Wave
Modeling, Polytechnic University, New York, NY, Oct. 1990.

12 - 23. IEEE Antennas and Propagation Society (AP-S) National Lecture, "Where is engineering electro-
magnetics going?” 135-minute talk presented from Oct. 1990 - May 1991 at twelve locations: (1)
Grumman Aerospace Corporation, Bethpage, NY: (2) I[EEE AP-S, Santa Clara, CA; (3) University of
California at Davis; (4) University of Arizona at Tuscon; (5) Arizona State University, Tempe, AZ; (6)
IEEE AP-S, Phoenix, AZ; (7) Los Alamnos National Laboratory, Los Alamos, NM: \8) [EEE AP-S,

® Chicago, IL; (9) [EEE AP-S, Dallas, TX; (10) ABB Impell Corporation, Lincolnshire, IL (in bonor of

National Engineers' Week); (11) IEEE AP-§, Atlanta, GA; and (12) [EEE AP-S, Boston, MA.

24, "Finite-difference time-domain solution of Maxwell's equations,” Progress in Eleciromagnetics Research )
(PIERS) Symposium, MIT, Boston, MA, July 1991.

PY 25. "Supercomputing simulation of femtosecond pulse propagation,” Superconducting Digital Circuits and
Systems Conference, George Washington University, Washington, DC, Sept. 1991.

26. A. Taflove, "Re-inventing electromagnetics: Supercompuling solution of Maxwell's equations via direct
time integration on space grids,” One-hour invited talk at the American Institute of Aeronautics and
Astronautics (AIAA) 30th Aerospace Sciences Mtng. (AIAA Paper No. 92-0333), Reno, NV, Jan. 1992,

® 27. A. Taflove, "Mathematical developments in grid-based time-domain algorithms for Maxwell's
equations,” 50-minute keynote talk at Electromagnetic Code Consortium/U.S. Army Missile Command
Symposium on the Solution of Maxwell's Equations for the 90's and Beyond, Redstone Arsenal,
Huntsville, AL, April 1992.

PY 28. A. Taflove, "Re-inventing electromagnetics: Supercomputing solution of Maxwell's equations via direct
time integration on space grids,” Two-bour lecture at the Electromagnetics Laboratory and the
Electromagnetic Communications Laboratory, University of Illinois at Urbana-Champaign, May 1992.

29. A.Taflove, "Re-inveniing electromagnetics: Supercomputing solution of Maxwell's equations via direct
time integration on space grids,” 45-minute inviteu talk at the National Engineering Consortium
ComForum, Chicago, IL, June 1992,

30. A. Taflove, "Re-inventing elecuromagnetics: Supercomputing solution of Maxwell's equations via direct
time integration on space grids,” 50-minute invited talk at the Symposium on Cot.putational
Electromagnetics, Computer-Aided Design and Supercomputing, sponsored by the Office of Research and
Developmeat, Central Intelligence Agency, McLean, Virginia, July 1992,

L4 31. A.Taflove, "Re-inventing electromagnetics: Supercomputing soluuon of Maxwell's equations via direct
time integration on space grids,” 3-bour invited lecture at Air Force Institute of Technology, Wright-
Pauerson AFB, Obio, Sept. 1992,

i.  Number of Other Fresentations at Workshops or Professional Society Meetings: 1C




j. Honors / Awards / Prizes / Offices

Fellow, [EEE (1990)
Member, Electromagnetics Academy (1990)
Distinguished National Lecturer, IEEE Antennas and Propagation Society (1990-91)
Adviser of the Year ($1700 cash award), Northwestem’s McCormick School of Engineering (1991)
Chairman, Technical Program Committee, {EEE Antennas and Propagation Society Intemational
Symposium, Chicago, IL ( 1991-92)
6. First listed in Who's Who in Engineering. Eighth Edition (1991)
7. Member, Search Commitiee, Dean of the McCommick School of Engineering (1991-92). ®
8. First listed in Who's Who in America, Fotty-Seventh Edition (1992-3)
9. Chairmnan, Graduate Committee, Dept. of Electrical Engineering and Computer Science (ended 6/92).
10. Member, Search Committee, Dean of the McCormick School (ended 3/92)
11. Member, Promotion and Tenure Committee, McCormick School (ongoing)
12. Faculty adviser 10 Eta Kappa Nu and Tau Bcta Pi honor societies' student chapters at the McComick
School (ongoing) ®
13. Originator of, and faculty adviser to, the McConnick School Undergraduate Design Competition (ongoing).
14. Re-builder of, and faculty adviser to, the McCormick School amateur radio club/station, WIBGX
{ongoing).
15. Originator of, and principal faculty adviser to, McCormick School outreach program to three local high
schools (New Trier, Evanston Township, and Niles North (ongoing).

[V - SNV N

]
k. Total number of Graduate Students and Post-Docs Supported at least 25% 0n this contract/grant:
Graduate Students _4 Post-Docs  _(
Of these, 2 are female. None are Blacks, Aleuts, Amindians, etc. ®
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(EEE TRANSACTIONS ON ANTENNAS AND PROPAGATION. VOL. AP-35. NO 2. FEBRUARY 1927 153

A New Formulation of Electromagnetic Wave
Scattering Using an On-Surface Radiation
Boundary Condition Approach

GREGORY A. KRIEGSMANN, ALLEN TAFLOVE, senior MEMBER, 1EEE, AND KORADA R. UMASHANKAR,
SENIOR MEMBER, [EEE

Abstraci—A new formulsting of electromagnetic wave seatteriag by
convex, {wo-dimensional conducting bodies Is reported. This formuls-
tion, called the on-surface radistion condition (OSRC) approaca, is based
upon sn expansion of the -~distion condition applied direcily on the
surface of 2 <«atterer. Past spproaches involved spplying u radistion
condition at some distance from the scatterer ia order (0 achieve 2 nearly
*eflection-free (runcation of s finlte-difference time-domein Ilaitice,
However, it is now showa that spplication of a suitsble radistion
condition directly on the surface 0y a convex conducting scatterer can lead
to subsisniial simplification of the {requeacy-dovisin integral equsiion
{0~ the scattered fielc, which is reduced (o just 3 line integral. For the
transverse magaetic (TM) case, the integraud is koowe explicitly. For the
traasverse electric (TE) case, the intcgrand can be easily constructed by
solving an ardinary differential equation srourd the scatterer surfsce
contour. Examples are provided which show that OSRC yields computed
near aad far fields which spproach the exact re_uits for canonical shepes
such ag the circular cylinder, square cylinder, and strip. Electricai sizes for
the examples are ka = $ and kg = 10. The a.w OSRC formulation of
scatiering may presem s useful alternative (o present intcgral equation
and uniform high-’requeacy spproaches for coavez cylinders larger theaa
ka = 1. Struclures with edges or corners ~an also be analyzed, althrugh
more work is nerded (o incorporate the physics of singular currents at
these discontinuities. Convex dielectric structures can ajso be tresied
using OSRC. These will be the subject of s forthcoming paper.

I. InTRODUCTION

’I‘HE APPROACH PRESENTED here is a ligh-frequency
technique for modeling electromagnetic scattering,
radically different from the geometric theory of diffraction
(GTD). This new technique, which we call the on-surface
radiation ‘ondition. (OSRC) approach, converts the usual
surface inie2ral equation for the scattering problem into either
an integration of known quantities or a <imple ordinary
differential equation for convex two-dimensional targets. It is
currently applicable to convex conducting cylinders of arbi-
trary cross section, yielding codes for both the transverse
electric (TE) and transverse magnetic (TM) cases that are
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suitable for rapid processing by computers in the class of the
VAX 11/780. The OSRC approach has been extended to two-
dimensional homog=neous dielectric targets, yielding similar
analyses. These will be reported in a separate paper {1].

The OSRC approach was motivated by numerical experi-
ments conducted over the past twenty years aimed at simulat-
ing scalar or vector wave propagation and scattering using a
finite-difference time-domain (FD-TD) rnodel of the goven.-
ing wave equation. This type of simulation results in numerical
anaiogs of the incident and scattered waves propagating within
a finite, two- or three-dimensional data spsce of field
components positioned at distinc: points in a lattice. To bound
the numerical domain, but rot disturb the simulation of a
scatterer embedded ir. an infinite space, it has been found
necessary to introduce a suitable radiation boundary condition
at the outermost lattice planes. This boundary condition should
allow outgoing scartered waves to exit the numerical data
domain without undergoing nonphysical reflection.

Several early investigators employed the Somenerfeld condi-
tion (in the time domain) as a local radiation boundary
condition to truncate the numerical domain [2]-(5]). Later
workers identified and exploited higher order differeatial
operators for this purpose {6]-(11]. These operators appear to
fall into two categories. - he first, exemplified by the work of
Kriegsmann and Morawetz (8] and Bayliss and Turkel [9),
uses the asymptotic behavior of the scattered field in cylindni-
cal or spherical coordinate systems to establish a series 8, of
operators that, when applied to the scattered field, annihilate
the first n terms of the asymptotic series. Bayliss and Turkel
further demonstrated that the series B, can be conveniently
generated using a recursive formula. The second category.
exemplified by the work of Trefethen and Halpern [!1],
derives an approximate one-way wave equation in Cartesian
coordinates by factoring the dispersion relation of the full
wave equation. and providing a rational polynomial interpola-
iion of the resulting square root at selected wave propagation
angles. This results in a reflection-free passage of plane waves
propagating at these angles through the lattice truncation
plane. The number of reflection-free angles and their values
can be selected in a systematic menner.

A receat series of numerical experiments involving FD-TD
modeiing of Maxweli’s equations in Cartesian coordinates and
two and three space dimensions has been reported [12]-{14].
These experiments wilized the radiation boundary operator

0018-926X/87/0200-3153201.00 © 1987 IEEE
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published by Mur [10), which is now known to be a Pade (2,
0) approximant as defined by Trefethen and Halpern (11). For
continuoss, sinusoidal excitation, it was observed that, if the
Mur condition were applied only eight space cells from the
outer surfaces of structures spanning up to 96 cells (with each
cell spanning apgroximately 0.1 wavelength), the radar cross
section could be modeled with an accuracy of 1 dB or better
over a 40 dB dynamic range {14). The robustness of the
numerical experimental data suggested that it might be
possible to apply a suitablc radiation condition ¢ven closer to a
scatterer 1o further reduce the required FD-TD lattice size.

In preparing for the new series of FD-TD numerical
experiments, an analysis revealed unexpectedly that substan-
tial simplification of the overall scattering problem would
occur for the important class of convex-shaped, two-dimen-
sional, conducting scatterers if the radiation condition were
applied directly on the surface of a scatterer in this class.
Essentially, the original frequency-domain integral equation
for the scattered field would be reduced to just a line integral
about the scatterer surface contour, where the integrand is
either known explicitly (for the TM case) or can be easily
constructed via soiution of an ordinary differential equation
about the surface contour (for the TE case). The prior
application of this concept, which we call the OSRC approach,
is not evident in the literarure.

Subsequent sections of this paper will develop the OSRC
theory for two-dimensional, convex-shaped, conducting scat-
terers for the TM and TE cases. Radiation boundary condi-
tions published by Kriegsmann and Morawetz (8), similar to
B, and B, published by Bayliss and Turkel [9], will be used in
this development. (It should be understood that OSRC theory
might be developed for the full range of Cartesian or circular
coordinate radiation operators, and that operators other than
B, and B; may present specific advantages.) It will be
demonstrated that use of a higher order OSRC can yield
computed near and far scattered fields which approach the
exact solution for several canonical conducting geometries
having electrical sizes k@ = 35 and ka = 10. The results
indicate that OSRC may present a useful alternative tc presemt
integral equation and uniform high-frequency methods for
electrically large convex cylinders of arbitrary cross section

shape.
I1. FormuLa110N OF THE OSRC APPROACH (TM POLARIZATION)

We shall consides a plane electromagnetic wave illuminat-
ing a two-dimensional. perfectly conducting, convex-shaped
cylinder for the transver.: magnetic polarization case. The
incident wave, proragating at an angle o with respect to the
—x axis, is giver by

ﬁ.m‘ :Lr‘me-/ulf; Ulr‘:ejlt(tcm a2~y 50 a) (1)

where the unit vector £ is paralle] to the cylinder axis. The .

parameter « is the frequency of the incident wave; k = wa/
¢; a is a characteristic dimension of the cy'inder's cross
section; and ¢ is the speed of light in free space. The variables
x and y are the corresponding dimensionless Cartesian
ceordinates in the plane orthogonal to 2. They are scaled with
respect to the length a.

The scattered electric field E, is given by

E:*Ug(f)e'/"'z (23)
au, (' /
1 4

(2b)

where C represents the boundary of the cylinder's cross
section; 3/dv” denotes an outward normal derivative on C;
and G is the free-space Green's function given by

G(i|2')=‘£ H)(kR) 20

R=|2-2"|aV(x=x")+(y-y'). (2d)

The vectors X and £’ appearing above are just normalized (x,
y) and (x’. y’), respectively. Since the cylinder is perfectly
conducting, the function U,(£’) can be replaced by = U (2')
in (2b) to obtain

AU,(%” 3G (2|2’
v = [G(xlx') a:' D4 U2 %L—z]ds’.

(3a)

Thus, the scattered field is completely determined when
aU,(£')/dv’ is found. The z-directed surface electric current
J is related to this normal derivative by

J (U, 3U.m)
J=—{( = 3b
nok <av’ * v’ (35

where 7o = Vo '€y. An expression for the normal derivative
will be derived shortly.

First, the far-field expansion of (3) can be obtained by using
the asymptotic expansion of H{’as r @ || ~ oo;

Jkr

o [4
Un(f)'[ A,e, .k)f'"] ¢ —_— 4)
2 Arte. a 7

where 7 and ¢ are the cylindrical coordinates of £. The term
Ay in (4) is given explicitly by

je/d aU
V8kx Jc L dv

(Sa)
wherey = X'-f£andcos 6 = #'-£, for £ = (cos ¢, sin )

and ¥’ = unit normal to the curve C at s’. The bistatic radar
cross section (RCS) is related to A, by the expression:

RCS=27alA|%. (Sb)

Ne«t, a sequeance of radiation boundary cperators {8,}, n
=1, 2, - -+ can be constructed which, for any n, annihilates
the first 1 terms in the asymptotic expansion of (4). This can
be considered as a way of matching the solution on the
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radiation boundary to the first n terms of the expansion uf the
solution exterior to the boundary. When B8, is applied to U, at
a fixed radius # = R, the annihilation rela:ionship can be
expressed as

B,U,=0O(R--13);, n=1,2,3, . 6

In this expression, the symbol O(R"") denotes a quantity
which decays like R-™ ag R — o. The first two operators,
which are used in this paper, are

B,=93/9r+1/2r—jk (Ta)

I
By;=9d/3r+1/2r- jk ~ (3’/6¢2+z>/[2rz(l/r-jk)].

(7b)

These operators appearcd in 8], and differ from those in [9]
by the inclusion of the 1/r term in the denominator of the last
term in (7b). The 1/r tern may be neglected for the TM case,
but must be retained for the TE case. Equation (6) has been
previously used (with n = 1, 2) in conjunction with finite-
difference time-marching schemes to close the computational
space at some distance from the scatterer while permitting only
an acceptably small level of nonphysical wave reflection {8],
{9]. Excellent results have been obtained for radiation bound-
ary surfaces only a few space cells from the scatterer for a
wide variety or problems.

Now, however, B8, will be applied to U, directly on the
surface of the scatterer, instead of at some distance off the
scatterer. This permits formal expressions for the normal
derivative of the scattered field dU,/d»’ to be obwined via
application of (6) on contour C, and setting the right hand side
of (6) equal to zero. First, the following replacements are
made:

1 4 9?
rtapet 9s?

®

1

ar ' r £s);
where {{s’) is the curv.aure of the cylinder's surface at s, and
3%/3s'? is the second derivative with respect to the arc length
of C. Essentially, these replacements are motivated by
approximating C at a point 2(s’) by its osculating circle {15)
and locally defining the operator B,. Then, B, U, = 0 implies

—=[jk=-¢t(s")/2U, (9a)
av
while B,U, = 0 gives

RPN T
v’ 2 8lk+/t(s)

. J v,
2k +jt(s")] as'?

9b)

Since the cylinder is perfectly conducting, U, is replaced by
— U on the right hand side of (9). This gives, for 8, and B;,
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respectively,
%&’ [f(—;—)-jk] Up, for B, (10a)
14
v, tis’) . s }
it -J/K- - U
v’ 2 8(k+/5(s))
J 63U

-2[k+j§'(s')] PO for B,. (10b)

Inserting either of these results into (3a) gives an analytical
formula for the scaner+d field. The corresponding surface
electric current expressions are obtained by combining (3b)
with either (10a) or (10b).

We observe that the term —jk{/,., which appears in both
{10a) and (10b), is the leading-order Kirchoff term. in the
OSRC formulation, however, this term as well as the others is
valid in both the lit and shadow regions of a convex scatterer.

HI. AprLicaTiON TO THE CIRCULAR CyLINDER: TM
POLARIZATION

This section will discuss the a “~lication of the on-surface
radiation condition formulation to the first of three canonical,
two-dimensional, convex conducting geometries, the circular
cylinder for TM polariz.iion of the incident wave. For this
problem. Cisthecircler = 1, withd/av’ = ad/dr’, ¢ = 1.
and the s derivatives in (10b) are just v’ derivatives. Without
loss of generality, « is taken as zero in (1) so that (10a) and
(10b) become

au, /1 ,

-a—r—1=<§—Jk> e/kco" ' fOI' B| (lla)
U (Lot eon
— - —————
ar A\ TR 1Y

” ,
+% sin? ¢’> eke - for By. (11b)

In (11b). the term (k + /j{) in (10b) has been replaced by k.
Computed results for the surface current obtained using these
expressions and (3b) are shown in Fig. 1(a) for k = 5, and in
Fig. 1(b) for k = 10, along wit the results obtained by using
a cylindrical mode summation. As is evident, (11b) agrees
with the modal ;um more closely than (11a). In general, the
use of the higher order B; operator implied 5y (11b) results in
agreement of the surface current (0 within | dB of the exact
solution for the & = 10 case.

Inserting (ila) and (1lb) into (5) gives, after some
manipulation. the following respective formulas for bistatic
radar cross section:

|
(/-2—k> Jo(¥)

N

RCS kix

A 2

+ sin (w/ 3)!.(5)1’ ., for B, (12a)
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6Q°

9K
(b)

Fig. 1. Surfice electric current on conducting circular cylinder, Tam case,
computed using OSRC method. showing convergence 10 exact solution for
higher order radiation boundary operator. (a) k = S. (b) k = 10.

120° 15 180° ¢

RCS k’«» S T R '
—— T — -— e / J
X 3 [J 3% 3 % (e Z)J o(§)
2
+g(w)J.(£)! , for B; (12b)
where
J\ . cos ¢
2(@) =2 <l+i;) sin (¢/2)+2—£ (12c)
£ m 2k sin (¢/2). (12d)

Note that the evaluation of only two Bessel functions is
required for the RCS computation, regardless of the electrical
size of the cylinder.

Fig. 2(a) shows the magnitudes of the radar cross section
computed using (12a) and (12b) for the & = 5 cylinder case,
along with the exact solution. Fig. 2(b) plots corresponding
data for the k = 10 cylinder case. Just as observed in Figs.
1(a) and 1(b) (cylinder surface currents), the radar cross
section obtained using the formula corresponding to the
higher order radiation condition B;, is in much better agree-
ment with the exact solution than that corresponding to B,.

Here, the higher order forrnula, (12b), results in agreement to -

within 0.5 dB of the exact radar cross section, in general.

[V. Arpuication 10 THE CONDUCTING STRIP. TM POLARIZATION

In this example, the scarterer surface contour C is composed
of the upper ar.d lower halves of the line segmen* v = 0, |x|
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Fig. 2. Bistatic radar cross section of conducting circular cylinder, TM cate,
computed using OSRC method. showing convergence to exact solution for
higher order radistion boundary operator. (8) k = 5. (b) k = 10.

S 1. On the upper half of the strip, 3/9»’ = 3/3y°, { = 0,
and 33/3s’? = 33/3x’3; while on the lower half of the strip,
/9y’ = —3/8y’. No special attention or care is paid to the
edges, x’ = 1, y’ = 0 although the edges are points of
infinite curvature. For brevity, only the higher order normal
derivative expression, (10b), will be used in this example.
Inserting (1) into (10b) gives

2] 1 -
-—Lj—fn —/k <l -5 cos? G) e/kx coea  for Bz. (13a3)
1 4

Using (13a) and (3b), the z-directed surface electric current is
given by

1 1 n
J'—(I sin a+ 1 - = cos? a) e/tr oo
o 2

for By(at y=0<). (13b)

Note that for a given wave angle of incidence a, the magnitude
of J is independent of position x’ on the strip, similar 1o the
physical optics case. However, a nonzero value of J is
computed in the shadow region y = 0—.

Inserting (13a) into (5) with ¢ = x — a gives

RCS | | sin (2k cos o) |3
l—icocza —_—

— e ¢
Cos a

N 2n for B;

(14)

as the monostatic radar cross section of the conducting strip.
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(b)
. Fig. 3. Monoswatic radar cross section of conducting stnip, TM case, computed using OSKC method with the 8, radiation boundary
operator. (a) k = S. (b) k = 10.
Fig. 3(a) compares the results of this analysis to those of the used in Section IV. In particular, (10b) directly gives
moment method [16) for a k = § strip; and Fig. 3(b) contains U
¢ th.e same information for k = 10. In gener‘al. the agrcemem is ‘—‘,l' - jk (l _l cos? a) e/kix’ cras una)  fo B,
within | dB for look angle, a, between 60° and 90°, except at v 2
nulls. Disagreement at smaller a is probably due to edge
currents. (15a)
V. APPLICATION TO THE SQUARE CONDUCTING CYLINDER: for|x| 51,y = 21;and
® TM PoLarizaTION al/, ) SN Kz conany’ mnor
[n this example, the scatterer surface contour C is a square w -Jk (1 T3t a e ; for By

with the four corners ( £ v2, +v3Z). The determination of the
surface current distribution follows the same line of analysis as

(15h)
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forx = x1, and |[y| s 1. The z-directed surface electric
current follows from (15a), (15b), and (3b). It is given by

1 | ,
J=— |z sina+l -3 cos? @ ) e/kis crat smal  for B,
Mo

’

(16a)

forix|] s I,y = x1;and

1 1 .
Ja— | ¥ cos a+l-§sin’a e/k(z cva~y sina)  for B,
o

(16b)

forx = 2 1,and |¥| g 1. Similar to the sirip case of Section
IV. it is noted that, for a given wave angle of incidence « the
magnitude of J is independent of position. x* or y*, on eac*
side of the zylinder. It is also noted that nonzero values of 4
are computed in the shadow regions of the cylinder.

To compute the monostatic radar cross section, (15a) and
(15b) are inserted into (5) withp = r ~ a:

RCS

| I
e [g1(a) + g2(ax) + g3(a)|? (17a)
x

where

in (2K si
gi(a)= <l -% sin? a) w cos (2k cos a)

sin a
(17b)
) in (2k
g:a)= <l -~ cos? a) sin (2k cos a) cos (2k sin a)
2 Cos &
(17¢)
-/ sin (2k sin a) sin (2k cos
fr(a)=—2 : ( D 179
sin o cos a

The formula for the monostatic radar cross section versus «a is
now given by (17a). Results using this formule are shown in
Figs. 4(a) and 4(b) in comparison with the method of moments
(16] for the k = 5 and k = 10 cylinder cases. Agreement is
within about 0.5 dB at all points (except fora = 12°and o =
14° for the k 2 )0 case).

VI. FormuLaTioN Of THE OSRC Arproack (TE
POLARIZATION)

For the case of TE polarization, (2b) is still vaiid if U, is
identified as the scattered z-directed magnetic field. Now,’
however, the surface current is given in terms of the incident
field, i.e., dU,/d»’ is known in (2b). If B is used, (92) wouid
then give U, on C, and (2b) would be an analytic formula for
U,(%). If the higher order B; expression of (9b) is used, then
U,[#'(s’)) satisfies a lincar second-order differential equa-

L}
USING 8, a

VIA METHOD °
OF MOMENTS

RCS/\

o 10° 20° 30
(a)

a0 a8 &

(oa o° 20° 30 a* 4% a

(b)

Fig. 4. Monstatic radar cross section of conducting square cylinder. TM
case. computed using OSRC method with the B; radistion boundary
operaior. (a) k = 5. (D) k = 10.

tion. By requiring that the solution be L-periodic (L is the
dimensionless length of C; L-periodic means that the solution
must be observed o repeat itself upon successive complete
walks around C), and noting that the coefficient of U, is not
purely complex, a unique solution of (9b) can be found. When
this is inserted into (2b), once again an analytic formula for
U,(R) can be obtained.

Let us now apply the above to the case of the circular
conducting cylinder. For convenience, the definitions of
Section 111 will again be used. For TE polarization, we have

Jw' (U, + Un) (18a)
and

U, OU.n (18b

v’ '’ )

On substituting (18a) and (18b) into (9a), the total surface
electric current on the ciicular cylinder is obtained as

J,= = Upn - (1=cos ¢), for B,. 19)

Note that the use of B, provides an explicit expression for the
current.

The case for B, is more involved. Substituting (18a) and
(18b) into (9b) yields the following second-order differential



KRIEGSMANN g1 o/.. ELECTROMAGNETIC WAVE SCATTERING

28 r

20

159

e o o USING B,

IBR a a a USING B,
He 10
PHYSICAL
OPTICS
os |
0 1 A \ — i “g_.
(o g 30 60° 90° 120° 150° 180°
(a)
1 4
Ew 1,
28 | l e | | —
Mo gy
‘ -l
i
20
8 e o o USINGB,
Yol 4 a & USNG 8,
—
= 10 PHYSICAL
OPTICS
0sf
. .. [ ]
0 L Y Y ¥
o* 30° 60° 30* 120° 150° 180°
ib

Fig. S.

Surface electric current on conducting circular cylinder, TE case. computed using OSRC methed. showing convergence to

exact solution for higher order raciation boundary operator. () K = 5. (b) k = 10.

equation for the current:
aJ

C,—==1,=2U,. (1 U
2 gorde= U (-CICOSW)‘CZV' for B;
(20a)
where
8k + 8k -4
C P r——— D ——
P38k 12k C: 3+ 8ki+/12k (206)

and J, is 2x-periodic. We note that this system is linear with
constant coefficients, and can be solved using standard
analytical or numerical methods. We also note from (20) that,
in the high-frequency limit (large k), C, approaches | and C,

A7
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approaches —1/2k*. However, (20) does not reduce to (19)
because the ¢ derivatives introduce k? factors multiplying the
C; terms.

Fig. § graphs the B8, OSRC solution (from (19)), the B;
OSRC solution (from the system of (20)). and the method of
moments solution for the current distributionona k = § and kK
= 10cylinder. Note that the use of the B, operator extends the
range of essential agreement between OSRC and the method of
moments result over most of the circumference of the
cylinder. In particular, we observe the evolution of an
oscillatory behavior (identified as the result of the creeping
wave) in the shadow region.

When the scattering cylinder is convex but not circular, the
system of (20) no longer has constant coefficients. Again.
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there are standard solution techniques. In particular, a simple.
and very promising approach is the - following iterative
scheme, illustrated for (20) as

d! Jim
de?

U,
et

J('nol)=cz ..U“‘ . (l"Cl (02 ¢)+C2 (21)

where J denotes the nth iteration for the current. A
convenient selection for /' is the B, result given by (19). This
scheme would be conveniently implemented for arbitrary
convex bodies on conventional computers.

VII. RELaTiON TO PrEVIOUS HIGH-FREQUENCY APPROACHES

The OSRC approach provides an approximate asymptotic
high-frequency result which is convenient for engineering
applications. This new approach is valid both for fields
direcdy at the surface and exterior to the surface of a smooth,
perfectly conducting, convex cylinder when it is illuminated
by a plane wave. As was seen forthe kK = Sand k = 10
circular cylinders, the computed surface current result is
uniform in the sense that it remains essentially valid within the
transition region between lit and shadow regions, and even in
deep shadow regions. As observed earlier, the OSRC results
contain the leading-order Kirchoff terrn, as well as others,
which are valid in both lit and shadow regions.

Previous work in this area (17), (18) also developed
uniform-theory solutions for convex, conducting, two-dimen-
sional cylinders. However, the previous work required a
complicated analysis. In fact, a separate analysis was needed
close to the cylinder surface. The new approach discussed in
this paper has the advantages of simplicity and a consistert
ease of application for arbitrary convex cylinders, for both on-
surface and off-surface fields. Further, the new approach
appears o permit good treatment of convex scatterers that do
not have smooth surface contours, i.e., have edges or corners,
as exemplified by the strip and square-cylinder results reported
in this paper. Shadow-region currents with OSRC are nonzero
for such structures. However, OSRC does not currently
provide edge-current singularity behavior.

VIU. SumMmARY AND CONCLUSION

A new formulation of electromagnetic wave scattering by
two-dimensional conducting bodies of convex shape has been
presented. This formulation is based upon a series expansion
of the radiation condition which is applied directly on the
scatterer surface. Substantial simplification of the overall
scartering formulation is achieved since the original integral
equation for the s:artered field is reduced to just a line integral
whose integrand is either known (for the TM case) or can be
easily constructed (for the TE case). Results presented for TM
illumination of the circular cylinder, square cylinder, and
infinitely thin strip scatterers are simple analytical expressions
for the surface electric current distribution and radar cross
section. Results presented for TE illumination of the circular
cylinder are obtained via solution of a simple second-order
differential equation. Comparison of these OSRC results with
benchmark computations for scatterer sizes of ka = § and ka
= 10 indicates good agreement for the B; radiation operator.

18]
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The ability to easily construct a sequence of higher order
OSRC operators may ultimately lead to new approaches in
modeling reentrant scatterers (as well as convex) and three-
dimensional scatterers. This may present a useful alternative
to present integral equation and uniform high-frequency
approaches for such structures. A forthcoming paper will
consider the application of OSRC to convex dielectric scatter-
ers [1].
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by an inciucnt field other than a plane wave. However, the uniform
Fagn-rrequency solution (1) is valid only for broadside plane-wave
incidence.
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An Application of the WKJB Techaique to the
On-Surface Radiation Condition
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Abstract—The on-surfasce radistion condition (OSRC) method snd the
WKBJ method sre used (o derive an anaslytic formuls for the surface
currenis on a (wo-dimensicns) perfectly conducling convex target. The
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curresls are induced by an incidcat TE-polarized plane wave. The case of
8 circuln; cylindet is used to demonstrate the usefulness of the combined
methods. It is shown (hat s (wo-term expansion yields good resulis for the
surface currents and excellent results for the ensuing bistatic radar cross
section.

I. INTRODUCTION

Recently, Kriegsmann er al. have introduced a new method for
solving scattering problems for two-dimensional convex cylinders
{1]. By applying a radiation boundary condition on the surface of the
scatterer (OSRC) they obtained a simple analytic expression for the
surface current when the incident wave was transverse magnetic
(TM) polarized. When the incident wave was TE polarized, the
method yielded an ordinary differential equation for the surface
current. This equation contains variable coefficients which depend
upon the geometry of the cylinder and the nature of the incident wave.
In general, it cannot be solved exactly.

In this communication. we shail derive an approximate solution 10
this differential equation by using the WKBJ technique {2]. The
motivation for such an approximation is twofold. First, it affords an
accurate analytical approximation to the surface current without
recourse to the numerical solution of 2 boundary value probiem for
arbitrary convex shapes. Secondly, and perhaps more importantly. a
recent work by Jones (3] suggests that the approximate ‘‘surface
current”’ for a three-dimenasional convex acoustic target (hard)
satisfies a second-order partial differential equation on the target's
surface. We believe that a similar siruation will occur when the OSRC
method 18 extended to handle threc-dimensional electromagnetic
scanering problems. It seems plausible that the method presented
herein could be extended to handle such situations.

The remainder of this work is organized in three additional
sections. In Section 0 the scantering problem is formulated, and the
OSRC method is used to derive an ordinary differential equation for
the surface current. An approximate solution to this equation is
deduced by the WKBJ method in Section OI. Finally. in Section IV
the results for a circular cylinder are presented.

0. FORMULATION

We shall consider a transverse electric plane wave illuminating a
two-dimensional perfectly conducting convex cylinder. The incident
wave, propagating at an angle a with respect to the - x axis, is given
by

Rut - Uime-l"l’-

Um‘_e/nt:uc-;lma) (1)

where the unit vector ¢ is parallel to the axis of the cylinder. The
parameter « is the frequency of the incident wave, k = wa/c, cis the
speed of light in free space, and g is a characteristic dimension of the
cylinder’s cross section. The variables x and y are the corresponding
dimensionless Cartesian coordinates in the plane orthogonal to .
They are scaled with respect to the length a.

The scantered magaetic field A, is given by

R(¥)=U(R)e i} 2a)
U(R)= j( J(R) ? (T, %) ds b

where C represents the boundary of the cylinder's cross section.
3/3v’ denotes an outward normal derivative on C, and G is the free-
space Grzen’s function given by

ot
G(RIF') = HP(KR) (20
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Ra|Z-'|=V(x=x")+(y-y' )% (29

The vectors ¥ and ¥’ appearing sbove are just normalized (x, y) and
(x’, y'), respectively. The tangential surface current J appearing in
(2b) is related to U, and U by

J(Z)= - [Une(Z) + U(R)). (3)

The tangential current is unknown, because U is not prescribed for
the TE polarization. The OSRC method provides a means of
generating an approximation to U in terms of known geometric
quantities and U,,.. The motivation for this method. and its complete
description are explained in [1]. Here, we present a single second-
order approximation which is the one most often used in practice. ' s

a? U,
Zfi U+A(5)U=B(s) —é—y- (4a)
A(s) =2k + 3jk(s) -% $i(s) (4b)
B($)=2j(k+j(s) (4c)

where {(s) is the curvarure of the cylinder’s surface at s and d%/ds? is
the second derivative with respect to the arclength of C. Combining
(3), (4), and the definition of U, from (1), we find that J satisfies

2

g}é’ + A(s)J = - F(s)ert (52)

de \?
skl 2~ =) -
F(s)=k {2 ( ds) Za(s)}

. a?
+jk {;‘3«»3;(:)-2‘:(:);(:)} -% $s) (5b)

d,z
a(s)=A(s) - (cos a, —sin a) (5¢)
@(s) = Tp(s) - (cos o, —sin a) (54)

where %y(s) is the vector representation of the curve C. In addition to
satisfying (5) J must also be periodic, i.e.,

J(s+L)-J(s).%’(,s+L)=%’(s), 0sssL 6)

where L is the length of C. Thus the OSRC method has reduced the
determination of the surface current to the problem of solving an
ordinary second-order linear differential equation with variable
coefficients and periodic boundary conditions.

We note here that the coefficient A(s) in (5a3) has & nonzero
complex component. Thus the homogeneous solution of (5), (6), i.c..
F = 0in (5a), has only the zero solution. From this we deduce that
(5). (6) has a unique solution {4).

M. WKBJ ANALYSIS

The actual computation of the surface current J which satisfies (5),
(6) is impossible to performn analytically for an arbitrary convex
cylinder. In general, it must be done numenically. However, it is
quite easy to obtain a WKBJ approximation of J which yields an
analytic formula.

According to this procedure we express J as

J(5) = V(s, k)e/sw (7a)

where the amplitude ¥(s, k) has the asympiotic expansion

Vis, k)~ Y Vals)k—". (70)

ne(

Since the phase ¢(s) defined in (5d) satisfies (6. the function J will
too, as long as the amplitudes V,(s) also satisfy these conditions.
Inserting (7) into (5) and equating to zero the coefficients of the
powers of k, we deduce an infinite number of algebraic equations
which sequentially determine the V,(s). The first two amplitudes,
which suffice for our purpose here, are given by

at)

Vo(s)= - | +D(s)

(8a)

$+(3+30) Vo;;éf'o- f(2a~ 3)} ()

V@)= -/ {

D-!—%d’ (8¢)

where the dots denote differential with respect 1o the arclength s. We
note that the denominator D does not vanish because ¢ is the
projection of the unit tangent vector onto (cos a, — sin a) and is thus
less than one in modulus. We also observe that ¥, and V| satisfv (6)
because the curvature {(s) and o(s) are periodic functions.

Inserting the first two terms of (7b) into (7a) we formally deduce
that

J~ [Vﬂ»% V,+0(1/k2)] eitows) )

where O(1/k?) represents the remaining terms. This is the WKBJ
approximation of the periodic solution of (5), (6).

The approximate surface current given by (9) can be inserted into
(2) to determine the scattered field. This expression simplifies in the
far field, 7 » 1, 0

e/h
U~A@®, k) — (10a)
r
A®O, k)= - ﬁ. e/t s V, (,)...l Vi(s) ] e cos b(s) ds
’ 81 c [1] k 1

(10b)

where Y(s) = —X(s)-F + &(s), cos & = Ai-F, A is the unit normal of
Cats, and F = (cos 6, sin O) is the unit vector in the observation
direction.

IV. ExaAMPLE: THE CIRCULAR CYLINDER

In this example C is a circle of unit radius so that {{ = | in all the
preceding formulas. Without loss of generality, the angle « defincd
in (1) is set to zero in the subsequent equations. The exact boundary
value problem for the Helmhotz equation can be solved exactly using
a Fourier series representation. In Fig. 1 we have graphed the results
predicted by (9) versus the Fourier series solution for the k = §
circular cylinder. Thirty terms were taken in the Fourier series to
obtain an accurate answer. As can be seen in this diagram, the results
given by (9) are quite close to the exact answer. Similarly, Fig. 2
shows our results for the k = 10 circular cylinder. Here again 30
terms were used in the partial sum to insure accuracy. The agreement
between (9) and the exact solution is even better than before: this is to
be expected since the WKBJ method is a high-frequency approxima-
tion.

Fig. 3 compares the bistatic radar cross section predicted by (10b)
for a k = 5 circular cylinder verses the exact answer computed by a

All
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Pregicied Sutface Curreats vs. Angle
TE —~ polanzation
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Fig. 1. OSRC predicted surfsce currents usiog a fwo-ierm asymptodc
expansion {or kK = $ circular cylinder.

Predicted Surfoce Currants vs. Ange
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Fig. 2. OSRC predicied surface currents using & two-ferm asymploti
expansion for k = |0 circular cylinder.

Fourier series. Fig. 4 shows the biztatic radar cross section for a k =
10 circular cylinder. We can see that the agreement between the
predicted and the exact RCS is very good over the entire range of
angles, and as before, the error is even smaller for the larger
cylinder. This is to be expected since the integration process tends 10
remcve small errorz introduced by the asymptotic expansion. The
most significant errors ar= in the deep shadow where the phase of our
approximate curreats differs from the exact answer. This is pot a
deficiency in the WKBJ method but rather the OSRC approximation.

In conclusion we see that the asymptotic expansion (9) does 1 good
job of estimating the surface current ove- a wide range of frequencies
while even better agrecments can be seen in the bistatic radar cross
section results. Thus, for convex objects being iluminated by a TE

Predicted Bistatic Radar Cross Secton vs. Angle
= polarization
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0.¢0 =— T ™— — - -
o] 3¢ 60 a0 120 *€0 '8
T™ETA
Fig. 3. Predicted RCS for k& = 5 circular cyiinder (RCS is scaled with
respect to k).
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Fig. 4. Predicted RCS for k = [0 cirrular cylinder (RCS is scaled with
respect to k).

polarized wave, the combination of the OSRC and WKBJ methods
provides a powerful tool for analyzing scattering problems.
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Theory and Application of Radiaticn Boundary
Operators
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Invited Review Paper

Abstract—A succiert mnified review is provided of the theory of
radiztion boumdary operators which has appesred principally in the
spplied matberuatcs 20d compeiational physics literature over the last
tem years. With the receat Introdection of tbe on-turface radistion

cosdition (OSRC) method and the continued growth of finite-difference *

sod finite-clement techaiquea for modeling electromagnetic wave scatter-
{2g problems, the understanding and ase of radiation boundary operstors
bas hecome inreasingly important to the cagineeriag commausity. o the
OSRC method, spe ific radistion boundary operstors sre applied directly
os (he sarface of -a arbitrary coavex larget, substaatially simplifying the
osual integral ¢ juatioa for the scattered field. In the finite-difference s0d
flalte-slement techaiques, radistioa boaoadary opersiors are used (o
traocate the computationsi domaia oear the target, while sccurately
simulatiog an infigite modeling space. Results are presented to Mustrate
the spplicatios of radistion bowodary operators in boib of these areas,
Recent OSRC results inclade analysis of the scatiering dedavior of doth
electricaily small 30d clectrically large cylinders, a resctively Joaded
scoustic sphere, 20d 2 simple reeatrant duct. New radistion boondary
operstor results include the demounstration of the effectiveness of higher
arder operztors ia (ruacatisg fnite-difference time-domain grids.

I. INTRODUCTION

WITH THE RECENT introduction of the oa-surface
radiation condition (OSRC) method [1] and the
coatinued growth of finite-difference time-domain (FD-TD)
{2] and finite-clement [3] techniques for modeling electromag-
netic wave scattering problems, the understanding and use of
radiation boundary operators has become increasingly impor-
tant to the engineering community. Radiation boundary
operators have fundamentally different uses in the OSRC and
finite-difference/finite-elemenc methods. Finite techniques use
radiation boundary opcrators in either the time domain or
frequency domain to create a radiation boundary coadition
(RBC) which truncates a volumetric computationa! domain
clectrically close to a modeled target, and yet effectively
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simulates the extension of the computational domain to
infinity. In contrast, the OSRC method uses the radiation
boundary operator directly on the surface of the target to
reduce the usual frequency-domain integral equation for the
scattered field to either an integration of known quantities or a
second-order ordinary differential equation. Each is simply
implemented on the target surface. Although the OSRC and
finite methods use radiation boundary operators in different
manners, both techniques can be-greatly enhanced by more
effective radiation boundary operators.

The purpose of this paper is to provide a succinct unified
review of key research that has been performed in the area of
radiation boundary operators. Because much of this research
has appeared in rthe applied mathematics and computational
physics litcrature over the past ten years, its results and
implications are generally not well known by the engincering
electromagnetics community. This paper will also preseni
some recent results from the application of these operators to
eagineering problems. In particular, we will examine two
basic types of radiation boundary operators and give examples
showing their use in both the FD-TD and OSRC methods.
Specifically, in Section 0 we will discuss the theory behind
radiation boundary operators. In Section HI the radiation
boundary operators will be used to construct new radiation
boundary conditions for 2 two-dimensional FD-TD grid of
higher order than those cuently used; and the effectiveness of
the new radiaton bourn.. .y conditions will be tested. In
Section [V, the radiation bovadary operators will be used in
the OSRC method to approximately solve the problem of
scattenag from a perfectly conducting cylinder. Section V
concludes with a discussion of the research antivities that are
ongoing in the areas ot - adiation boundary operators and their
applications.

O. THEORY

There are two basic types of radiation boundary operators:
mode annihilating and one-way wave equation approxima-
tions. Each of these radiation boundary operators possesses
different characteristics and forms. In this section, the two
Jifferent types of radiation boundary operators are examined
in detail.

0018-926X/88/1200-1797501.00 © 1988 [EEE
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A. Mode-Annihilating Operators

The first type of radiation boundary operator to be discussed
is the mode-annihilating differential operator. This type of
operator is based on the idea of killing the terms (herein
referred to as ‘*modes’’) of the far-field expansion of outward
propagating solutions to the wave equation. One can view the
idea of killing modes of the scattered fields as first being
proposed by Sommerfeld in the form of the Sommericia
radiation condition [4] which annihilates the first mode in the
expansion. Later, researchers (5} extended the Sommerfeld
theory and created an operator that annihilates the next mode
in the expansion. Independently, other researchers created a
general operator that kills an arbitrary number of m.odes in the
expansion as derived and presented in [5). It is the theory that
apneared in [6] that will be reviewed in this section.

For this section we will proceed as follows. In Section I-
Al) the scattered fields are written in terms of a far-field
expansion, and the effect that the Sommerfeld radiation
condition has on the expansion is presented. The operators
derived in [6], are presented in Section I-A2) for the full
three-dimensional case and are specialized to two dimensions
in Section [I-A3).

1) Far-Field Expansions and the Sommerfeld Radiation
Condition: We consider here solutions U(R, 8, ¢, ’) to the
scalar wave equation

ViU-U.=0 )

and the associated Helmholtz equation for time-harmonic
waves

ViU+k*U=0 )
where the wave speed ¢ has been scaled to unity and the
harmonic wave is assumed to have time dependency e~/~'. The
radiating solutions of the scalar wave equation (i.e., solutions
propagating in directions which are outward frorr the origin of
a spherical courdinate system) can be expanded in a conve:-
g~nt series of the form (7],

=fit—R,0.¢
U(R, 8, ¢, ')=Ef_(—_k7———)'

iai

3)

This result was extended to the time-harmonic casc for both
vector and scalar fields (8). For the scalar Helmhoitz equation,
it is proved in [8) that
ek = 1.6, ¢)
U(R, 8, ¢)=T2 R

i=Q

(4)

is a convergent expansion for scalar wave functions that satisfy
the Sommerfeld radiation condition.
The Sommerfeld radiation condition (4], given by

/lnipl R(Ur-jkU)=0 (5a)

where Ug denotes a derivative respect to 2, is satisfied by the
cach term of (4). By using the correspondence —jk = 3/41,
the Sommerfeld co-dition is extended to

/lai-nl R(Uzr+U)=0 (5b)

which is satisfied by each term of the expansion in (3). The
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Sommerfeld radiation condition can be viewed as an operator
on the far-field expansion of U giving the asymntotic result,

]
—_— ] - -2
<3R jk) U=0(R-?) (6)
in the limit R = . In other words, the Sommerfeld condition
retains terms that are no greater than O(R ~?) in the expansion.

Z) Higher Order Operators: With the goal of devising
operators that annihilate terms up to any orzer .n the far-field
expansion of I/, a sequence of operators 3, was proposed [6)
for the expansion in (3). A similar sequence of cperators was
independently developed for the Helmholtz equation in two
dimensions (£]. The former wete extended [9) for the
Helmholtz equation in both two and three dimensions. We
restrict our review here tu operators for the time-harmonic
case [J)], keeping in mind that results for waves of arbitrary
time variation can be obtained by a simple substitution of 3/9¢
for the term — jk.

The derivation of B, begins by multiplying a slightly
rewritten version of (4) by R" and then splitting the sum as
shown:

R"U(R, 6, $)=3 R™-'eMF (8, )

1=
-

+ 3 RreMRF6, 6). ()

isnsl

Now define the intermediate operator,

L m 9 ik
aR "’
and obsen ¢ that applying L " to both sides of (7) annihilates
the first sum and makes the leading order term of the second
sum be O/R-"-'). We have

L (R*"V)=0(R"""N)) (8b)

which accomplishes the goal of annihilstipg the first 7 tcrms of
the far-field expansion. A moie usefui way to expr~ss this
result is as a sir.gle operator acting on U oniy This is achieved
by inductive arguments {9). vior n = 1,

(8a)

d
L(RU)=(5-§~jl(> RU=0(R"?Y) (9a)
r _.A) U+ U=0(R"?) (9b)
\v."
which can be wntten as
< 9 'k+l‘ U= "R 9
ar "’ R) = ' )
The first operator in the sequerce :, then
1
B| =L+E (103)

which, when applied to both sides of (4), annihiiates the first
term of the expansion. Similarly,

oe(e-3)(})

(10b)

Ald

o
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annihilates the first two terms. In gencral, the recursion

relation,
2n-1
B.,=|L B,_
(" R ) !

produces an operator which annihilates the first # terms of the
expansion in (4). The sequence of operato.s gives

B,U=0O(R-*"1)

aan

(12)

for any function U satisfying the expansion in (4).
In the literature, B, has been utilized as a boundary
condition
B U=0 (k)

for the wave function U. This condition becomes more
accurate, in powers of R-', as the order of the operator n
increases. The originul application of (13) was to truncate a
computational domain while accurately modeling the outward
propagation of waves to infinity. Further application of B,,
particularly B;, is found in the OSRC method for computing
scattering from two dimensional, convex, conducting and
homogenous dielectric bodies.

3) Operators for Two-Dimensional Wave Propagation:
Extension of B, for use with wave functions U(r, 6, ¢) in two
soace Jimensions proceeds in the time hammonic case from an
expansion presented in [10],

; G
UG, 0= Hotkn $ 4 ik 522 g

ie0 ie0

which has the far-field result (9],

U(r, )= fi

that is analogous to (4). A sequence of boundarv operators is
defined {6] by the recursion relationship

f'( ) (15)

e/t =-(r/1) Z

iaQ

4n-3
B,=(L+ ‘ )B.-. (16)
2r
where
1
Bi=L+- (173)
r
and
a
L m —-jk. (17b)
ar

The operator B, annihilates the first 2 terms of the expansion
(16) and yields
B, U=0(r-¥-13), ('8)

The utility of these operators will be demonstrated in
Section IV in the OSRC calculation of electromagnetic
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scattering from a conducting circular cylinder illuminated by a
TE polarized plane wave. The first two operators used there
are

a1
B ==+ ——jk

19a
ar 2r (199)

and

3 1 a 1 /1
L ]
By=—+ ik <w+4>/[zr (’ ;/c)] (190)

In the derivation of (19b) the recursion relation, (16) produces
a second-order  derivative. It is conveniently eliminated by

the substitution from the Helmholtz equation,
a? 1 32
—_= - 20
i riag? @0

B. One-Way Wave Eguations

A partial differential equation which permits wave pronaga-
tion only in certain directions is called a ‘‘one-way wave
equation.’’” Fig. 1 shows a finite two-dimensional Cartesian
domain { on whic" the time-dependent wave equation is to be
simulated In the interior of {1, a numerical scherne which
models wave propagation in all directions is applied. On the
outer boundary 4}, only numerical wave motion that is
ourward from @ is permitted. The boundary must permit
cutward prc pagating aumerical waves o exit 0 just as if the
simulation were performed oo a computational domain of
infinite extent. A scheme wnich enacts a one-way wave
equation on 49 for this purpose is called a radiation boundary
condition (RBC).

1) Derivation by Wave Equation Factoring!: The deriva-
tior. of an RBC whose purpose is to absorb numerical waves
incident upoan the outer boundary of a finite-difference or
finite-elemeat grid can be explained in terms of operator
factoring. Consider the two-dimensional wave equation in
Cartesian coordinates,

UatU,-U,=0. 21
The partial differential operator here is
L = D}+D}-D? (222)
which uses the notation,
2 al 32
Dim Py D= e Dim i (22b)
The wave equation is then compacuy written as
LU=0. (23)

The wave operator L can be factored in the following
manne::

LU=L*L-U=0 (24a)

' It can be demonstrated that wave equation factoring can generate 8, and
B, describrd in Section [I-A. However, this has not been shown for n > 2.
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Fig. 1. Two-dimensional Cantesian computational domain.

where L~ is defined as

L- ® D,-DN1-8§2 (24b)

with

(24c)

1

the operator L* is similarly defined except for a ** +"* sign
before the radical.

In (11} it is shown tha: at a boundary, say at x = 0, the
application of L - to the wave function U will exactly absorb a
plane wave incident at any angle and traveling in the -x
direction. Thus '

L-U=0 25)
applied at x = 0 functions as an exact analytical RBC which
absorbs wave motion from the interior of the spatial domain
{0 =((x9):0<x<h 0<y< h}. The operator L*
performs the same function for waves traveling in the +x
direction that impact the other x boundary in Fig. 1 atx = A.
The presence of the radical in (24b) classifies L~ as a
pseudodifferential {11] operator that is nonlocal in both the
space and time variables. This is an undesirable characteristic
in that it prohibits the direct numerical implementation of (25)
as an RB7.

Approximation of the radical in (24b) produce RBC's that
can be implemented numerically and are useful in FD-TD
sinwulations of the wave equation, The numerical implementa-
tion of an RBC is not ¢xact in that a small amount of reflection
does develop as numerical waves pass through the grid
boundary. However, it is possible to design an RBC which
minimizes the reflection as much as possible over a range of
incident angles [12]. The RBC derived in (13] and applied in
the simulation of electromagnetic scattering [14], uses a (wo-
term Taylor series approximation to the radical in (24b).

~/1-s=-1-;sl. (26a)

This leads to the following approximate analytical RBC which

Al6
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can be numerically implemented at the x = 0 boundary:

1
Un- U,,+5 U,,=0. (26b)
A generalization of (26) presented in (15) showed that the
construction of numerically useful absorbing boundary condi-
tions reduces to approximation of VI — S? on the interval
[=1, 1] by tne rational function,

Pmis)

=0

27

where p and g are polynomials of degree m and n, and r(s) is
said to be of type (m, n). By specifying r(s) as a general type
(2, 0) approximant, the radical is approximated by an
interpolating polynomial of the form

V1-Slmpy+p,S§?

resulting in the general second-order approximate analytical
RBC,

* (28a)

Ua=po U, =P U” =0. (28b)

The choice of the coefficients po and p, is determined by the
method of interpolation. Standard techniques such as Che-
byshev, least-squares, or Padé approximation are applied with
the goal of producing an approximate RBC whose perform-
ance is good over a wide range of incident wave angles.
Expressions similar to (28) can be derived and applied at the
other three boundaries of a two-dimensional FD-TD grid.

High order approximations to the radical in (24b) were
proposed in (15] as a means to detive a more accurate
approximate RBC. Use of the general type (2, 2) rational
function,

izsiL2tes
Go+ qsS?

(292)

gives the general third-order approximate analytical RBC,

GoUni+ @2 Usyy = po Ui - p3Uyy, = 0. (29b)

Appropriate selection of the p and g coefficients in (29)
produces various families of RBC's, as suggested in [12) and
{15). Forexample, go = po = 1, p; = =3/4,andq; = -1/
4 gives a Padé (2, 2) approximation in (29a) with the resuiting
RBC function better than (26b) for numerical waves impacting
the grid boundary at near normal incidence. This results in the
third-order RBC originally proposed in (11]. Other types of
approximating polynomials '‘tune’’ the RBC to absorb numer-
ical waves incident at specified angles other than normal, and
are considered to be a means to improve wide-angle perform-
ance [12). Results from a comparative study (16} of the
performance of various families of RBC's are presented in
Section 111

2) Derivation by Dispersion Relation: An alternate
procedure for obtaining one-way wave equations is presented
in the literature [12), {15). We summarize the technique here
for completeness. It is well known that if the dispersion
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relation for a linear constant-coefficient partial differential
equation is known, then the equation itself is specified (17].
Thus if one can obtain the dispersion relation for a one-way
wave equation, then an RBC apprpriate for use on 3% is
obtained.

If a plane wave solution

U(x, y, t)y=e/listsow) (30)
is substituted into (21), then
wl=§isp? an

is the dispersion relation for the wave equation which permits
wave propagation in all directions of the x-y plane. The wave
in (30) has velocity

vy k+u,§ (32a)
where
¢
Ugm ——= —cos 0 (32b)
w
vy= — 2= —sin 8 (2)

w
and @ is the counterclockwise angle measured from the the
pegative x axis. By rewriting (31) as

‘%- +V1l-s? (33a)

with

1

s= (33b)

a dispersion relation can be identified which corresponds to an
equation that admits plane wave solutions propagating only in
the —x direction. This is obtained by choosing the positive
branch of the square root in (33a) which corresponds (o waves
having velocity component v, in the —x direction. Wave
motion from the interior of ] will be absorbed at the x = 0
grid boundary if an equation having the dispersion relation,

tmwvVl -5,

is applied at that boundary.

Equation (34) is a dispersion relation for a pseudodifferen-
tial equation {11) and cannot be identified with a linear partial
differential equation which can be implemented numerically
on the x = 0 boundary. By approximating the radical in (34),
it is possible to obtain a dispersion relation which can be
identified with a partial differential equation that functions as
an approximate analytical RBC. The same methods of
approximation for the radical used in Section [-Al) can be
applied here; however, s is now defined by (33b). Once a
dispersion relation is obtained with approximaies the exact
relation in (34), the same RBC's are derived as in Section II-
Al). We illustrate here application of the two-term Taylor

(34)
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series approximation to the radical. Equation (34) becomes

E=w(l-;g—z) (35a)
which is equivalent to
Ew=w‘—% n? (35b)
which is the dispersion relation of
Ug=U,- % u,,. (35¢c)

This is the same expression as the approximate analytical RBC
giver. in (26b). Higher order RBC's follow directy.

Ifl. APPLICATION OF ONE-WaY WaVE EquaTtions: FD-TD
RaDWTION BOUNDARY CONDITIONS

In the simulation of electromagnetic wave scattering by
finite techniques, one-way wave equations are used to truncate
the computstional domain in a manner which accurately
models the propagation of scattered waves to infinity {13],
(14]. This section summarizes recent results in applying the
theory of one-way wave equations to the simulation of
electromagnetic scattering by the FD-TD method. In particu-
lar, the promise of higher order RBC's is quantified by a
reflection coefficient analysis and by numerical experiments.
It is demonstrated that a reduction in grid boundary reflection
is rzalized when a third-order RBC is applied on the boundary
of a two-dimensional FD-TD grid.

A. Reflection Coefficient Analysis

Numerical radiation boundary conditions derived from
approximate analytical one-way wave equations are not exact
in that a small amount of reflection wiil be realized from
numerical wave striking the grid boundary. For a numerical
plane wave striking the x = 0 boundary in Fig. |, the amount
of reflection is dependent upon the angle of incidence 6. Now,
scattered waves from a complex body can be viewed as a
superposition of plane waves striking the computational
boundaries over a wide range of incident angles. Therefore,
the performance of a given RBC can be assessed by deriving a
reflection coefficient R, which quantifies the amount of
nonphysical reflection a plane wave produces as a function of §
when it interacts with the grid boundary. Clearly. a good RBC
gives a small value of R over a wide range of 8. Such an RBC
should perform well in the simulation of a realistic scattering
situation because the grid boundaries would permit most of the
scattered energy to exit the computational domain.

Consider the outgoing plane wave in Fig. 1. The wave has
the form,

Une = €K1+ kxcos 0= ky sin®), (36)
The total field at the boundary of the computational domain
must satisfy the specific RBC in effect there. Postulating the
existence of a reflected wave launched from the boundary, the
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TABLE |
COEFFICIENTS FOR THIRD-ORDER RBC'S
Type of Approximarion Po P & Angles of Exact Absorption (*)
Padé 1.00000 -0.75000 - 0.25000 0.00
Le 0.99973 - 0.80854 -0.31687 11.7,31.3, 43.5
Chebyshey points 0.99650 -0.9129 ~0.47258 15.0, 45.0, 75.0
L 0.992%0 -0.92233 ~0.51084 18.4, 51.3, 76.6
cp 0.99030 -0.94314 -0.8556 18.4, 53.1, 81.2
Newman points 1.00000 - 1.00000 ~0.66976 0.9, 60.5, 90.0
L= 0.95651 -0.94354 -0.70388 26.9, 66.6, 87.0
@o = 1.00000 for cach wechnique.
TABLE @ range {0, 7/2] as a means to improve wide-angle performance
COEFFICIENTS POR SECOND-ORDER RBC'S {15]. A more general approach, which permits the design of
boundary conditions for plane waves incident at arbitrary
e imation ” o Avgies of a5 angles, is presented in (18] and (19).
Figs. 2 and 3 show the behavior of the reflection coefficient
Padé 1.00000 -0.50000  0.00 for the two best-performing RBC's as a function of incident
Le 1.00023 ~0.51388 7.6, 18.7 angle on the range [0, x/2]. In all cases studied, the behavior
LCi,;‘h""" points :'ggm :g';gg: g: 2': of reflection coefficient for third-order RBC's is better than
c-p 1.06102 -0.8488) 258,719 that of second-order RBC's. Fig. 2(a) shows R less than one
Newman points 1.00000 -1.00000 0.0, 90.0 percent for 0 < 8 < 45° for the third-order Padé RBC. Note
L 1.12500 ~1.00000 31.4,81.6

total field at the x = O boundary has the form,

U:.¢j(kl¢he¢0-kyml)+Rej(kl-umi-hymt) (37)

where R can be determined by substituting U directly into the
equation for the RBC used at the x = 0 boundary.

By substituting (37) into (28b) and (29b), reflection coeffi-
cient expressions as a function of incident angle are obtained
for the general second- and third-order RBC's. They are,
respectively,

cos 8 —po—p; 8in? 8
cos 8+ po+ p; sind 8

(38)

Jo €03 8 + @3 cos B 3in? 8 = po~p; 3in? 8

Go €08 0+ q; cos B sin? 8 + po+ p, sin? 6

where the coefficients p and ¢ correspond to the approximat-
jng function 1:sed in the derivation of the RBC. Seven
techniques of spproximation are devcloped in [15] for this
purpose. The techniques are: Padé; Chebyshev on & subinter-
val (LD); interpolation in Chebyshev points; least-squares
(L?); Chebyshev-Padé (or C-P); interpolation in Newman
points; and Chebyshev (L*). Tables | and II show p and ¢
coefficients for approximating functions of both second and
third order. The mechanics of their derivation can be found in
{15]. A type (2, 2) approximant produces a third-order RBC.
Second-order RBC's are obtained from type (2, 0) approxi-
mants. Also shown in Tables I and [I are angles of incidence at
which the RBC's are designed to exactly absorb numerical
plane waves. The Psdé family concentrates absorption near 8
= 0°. The others distribute absorption angles through the

that the Padé RBC’s have a very low reflection coefficient for
normal incidence. The distribution of exact absorption angles
away from 6 = 0° is illustrated in Fig. 2(b) for the L2 RBC.
The nuils in the behavior of R are as predicied by the analysis
presented in [15]). Fig. 3 compares the third-order Padé and
the third-order L RBC's. By sacrificing performancs Lear 6
= 0°, the Ly RBC extends the point at which R is less than
one percent to aboul § = 60°.

B. Numerical Experiments

Numerical experiments are now reported which clearly
measure the amount of nonphysical reflection a givea RBC
produces as a pulse propagutes through s grid boundary. Fig.
4(a) shows two domains on which the two-dimensional FD-TD
algorithm is computed simultaneously for the transverse
magnetic (TM) case. On the boundary of the test domain Or a
test RBC is applied. Each point in {l; has a cofresponding
member i the substantially larger domain fl,. A line source is
located at grid position (50, 25) in both domains. The source
produces outward propagating, cylindrical waves which are
spatially coincident in both domains up until time steps when
the waves interact with the boundary of (1r. Any reflection
from the boundary of f1y makes the solution at points within {3y
differ from the solution at corresponding points within (3. The
wave solution at points within fly represents the desired
numerical modeling of free-space propsgation up until time
steps when reflections from its own boundary enter the region
of f1y corresponding to (1. By calculating the difference in the
solutions in 1, and {1 at esch point at each time step, a
measure of the spurious reflection causcd by the boundary of
3y is obtained.

We define at the nth ime step

D(i, )=EI, ))-EX, )) (40a)

for all (1, /) within the test domain, where E7 is the solution
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Pig. 3. Comparison of third-order RBC's.
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Fig. 4. Pulse studies. (a) Computational domains. (b) Wave source.

within Q7 and E2 is the solution at points in 8. D(/, /) is the
local error in the test domain caused by its grid boundary
reflections. We also define a global reflected error measure,

E=3 % Di,Jj)
L

for all ({, j) within Q7, which measures the wtal reflected
error within the test grid at the nth time step.

The source used in the numerical experiments is the pulse
obtained from (20] and is defined as follows:

E, (50, 25, n)

(40b)

{a(lo-ns cos wy ¢ +6 cos wyt ~cos wyt), (st
0, tE>r
41a)
where
1
*"30
wmcgﬂ N m=], 2, 3
T
£ =nbt
r=}0"? (41b)

and 8 is the time step used in the simulation. In all
experiments we maintained 8¢ = 2.5 x 10-''secand 4 = 2¢
8t, where c is the speed of light in free-space and A is the space
increment of the finite difference grid. The time profile of the
pulse defined in (41a) is shown in Fig. 4(b). This pulse was
selected because it has an extremely smooth transition to zero.
As discussed in [20], the pulse has its first five derivatives
vanish at § = 0, 7 and is a good approximation to a smooth
compact pulse.

This pulse has very litle high-frequency content which is
important because of the deleterious effects of grid dispersion
(dependence of numerical wave phase velocity upon spatial
wavenumber). Grid dispersion and its relstion to RBC's is
discussed in (21), and [22). This problem is compounded in
higher dimensions by anisotropies of the numerical wave
phase velocity with wave vector angle in the grid {3], [23) and
is a subject of current research aimed at further reduction of
grid boundary reflection coefficients.

The source point in Fig. 4(a) is 25 cel’s from the boundary
of Irat y = 0. With the specification A = 2c 8¢, disturbances
at the source point require 50 time steps to propagate to the
boundary at y = 0. At time step 70, the peak of the pulse just
starts to pass through the boundary. We choose to observe the
reflection at the first row of grid points away from the y = 0
boundary (along J = 1) at time step 7 = 100. This permits the
bulk of the outgoing pulse to pass through the boundary and
excite the largest observable reflection.

A20
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Fig. 5. Error measures, Padé RBC. (1) Local error at n = 100. (b) Global ervor.

Figs. 5 and 6 show the local and global reflection errors
observed for the Pac and L= RBC's. Fig. 7 compares the
third-order conditions. In Figs. S(a), 6(a), and 7(a), D(i, 1)
has been normalized with the peak value of the incident pulse
which strikes the y = 0 boundary at time step 7 = 70 at grid
position (50, 0). The pulse experiment results are in agreement
with the reflection coefficient analysis by showing that higher
order RBC's do perform better than lower order RBC's in
actual simulations. However, comparison of the third-order
L7 RBC to the third-order Padé RBC does not indicate any
particular performance advantage. The improved wide-angle
performance suggested in {15] is not evident in these experi-
ments.

IV. Areuication oF MoDE-ANNIHILATING OPERATORS: OSRC

The on-surface radiation condition method (1] is a new
analytical technique by which it is possible to construct
accurate approximation of two- and three-dimensional scatter-
ing problems involving convex and simple reentrant targets. In
this section, two areas of application will be examined. In the
first application, the OSRC method will be applied to compute

A21

the scattering cross section of two canonical convex targets: 1)
a circular cylinder illuminated by both a transverse electric
(TE) and transverse magnetic polarized plane wave; and 2)
an acoustic sphere with a constant surface impedance. In the
second application, the OSRC method will be applied to the
scattering of a plane wave by a canonical reentrant geometry:
the open end of a semi-infinite flanged parallel-plate wave-
guide. Before cither of the cases is examined, some back-
ground discussion on the OSRC method is necessary.

A. Background

The OSRC method is based upon the application of a
radiation boundary operatoi, such as those discussed in
Section II, directly on the surface of the target. The effect of
this is to relate the surface currents to known field quantities
through a simple expression: thus the problem reduces to
solving an equation along the contour of the target. Only
second-order operators will be considered here because they
are the most widely used. The method used in this paper will
be the same one used in {l]. For completeness, recently
proposed variations will be reviewed as well.
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The original method developed for two-dimensional electro-  second-order two-dimensional surface boundary operator {1}
magnetic targets is to apply & mode-annihilating radiation P 2 .
boundary operator locally at esch point on the surface of the U—jk) — Um— Us | 2= 2+ 3ke| U. 0209 @
target (1]. This is conveniently done by noting that an an i 4
osculating circle can spproximate the 's surface locally st . .
were emanating from within the local osculating circle. In two [OF 8coustic tasgets is presented in [24). There, the following
dimensions, this is sccomplished by making the following Substitutions are made in the three-dimensional mode-anaihi-

substitutions: lating radistion boundary operator: o
a 9 i—oi 43
Py (422) aR on @
! 42b L~ H(s) @3
1 3 3 Vis

o “2) 7T #3e)

where n i's the outward normal, s is an arc length parameter, where V-V is the surface Laplacian and H is the mean
and «(s) is the curvature of the target at s. This produces the curvature. This produces the second-order three-dimensional ®

A22
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surface boundary operator,

9
- 2jk y U=V - VU+2A~k}-jkH)U. (43d)
A variation of this surface boundary condition is presented in
{25] in which a slightly different radiation boundary operator
is used. It is

Z(H-jk);; UaV - QU+ 2AH -k} -2JkH)U. (43e)

The fundamental difference between (43d) and (43e) is that the
latter annihilates terms of order (kR) -4 as compared to (kR) 3
for the former.

Other methods have recenty been presented for deriving a
general surface boundary condition for OSRC. A sequence of
surface boundary operutors is derived in [26] by directly
factoring the wave equation, as in Section [I-B but in 8 general
coordinate system based on the local properties of the target’s
surface. These results differ from (42d), (43d), and (43¢) by a
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term proportional 1o the derivative of the curvature multiplied
by k2. No published evidence exists at this time to indicate
that this term has any beneficial effects, The most recent
derivation of surface boundary conditions for OSRC was
presented in ([27), which demonstrates that the surface
boundary condition can be derived directly from geometrica!
acoustics/optics by making the sssumption that the surfacr
of the target is a phase front. The resulting boundary conditio
in three dimensions is

3 .
ija—n UnV - VU+Qk}+H:~xg-jkH)U (44a)

where xg is the Gaussian curvature. The corresponding
surface borindary condition in two dimensions is

2= 2 vaL valae - esi] v
an As? 6‘ JEK

J ok J ox U
akdy Ve e @
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Fig. 8. OSRC computed bistatic RCS of conducting circular cylinder, TE case. (1) kg = 10. (b) ka = 20.

We note that (44b) also differs from (42d) in the terms
proportional to the derivative of the target’s curvature (which
are formally O(k-?) corrections), but, in turn, differs slightly
from the operstor derived in [26]). More importanty, [27]
shows how this method is deriving surface boundary operators
can be appliad to the vector scattering case of OSRC.
However, no validations have been published to date.

Now that the surface boundary conditions have been
derived, the application of the OSRC method to scalar
problems is straightforward. We set

Bil/*m( (45)
on the surface of the target, where B’ is onc of the surface
boundary conditions described sbove. What results is an
expression that relstes the scattered ficld to its normal
derivative st each point on the surface of the target. This is
now combined with the usual relation between the incident and
scantered field (or the normal derivative of the scanered field),
as dictated by the problem.

B. Application to Scattering from Convex Targets

The use of OSRC is first illustrated by modeling scattering
by a perfectly conducting circular cylinder of radius a. The
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cylinder is illuminated by either a transverse electric or
transverse magnetic polarized plane wave. For either polariza-
tion, the second-order surface boundary condition (42d) is
appiied 1o the surface of the cylinder.

For TE polarization, with the magnetic field tangest to the
target's surface, the OSRC method results in an ordinary
differential equation (ODE) for the azimuthal surface current
amity .":

dj, 02U
C w-f.'-uig(l"C, cos )~ C TOI‘ (46a)
where
8k + 8k -4
| ( kel C; (46b)

T T3+ 8k 12k T T3vekivjiz

This is a very simple ODE since it has constar! coefficients
and thus may be solved analytically. The bistatic redar cross
section patterns for 3 ka = 10 and ka = 20 cylinder,
computed via a modal solution of (46), are plotted in Figs. 8(a)
and (b). The OSRC results for the B, operator are seen (o
de wonstrate excelient agreement with the exact solution over a




MOORE ¢t ol.: THEORY AND APPLICATION OF RADIATION BOUNDARY OPERATORS

1809

20
-~
1.0 4 >

16

144
1.2 4

1.0 4

Bisuatic RCS

0.8 4 *

— Exact
+ OSRC using B1
® OSRC using &2

064 M

.
0.4 4

LIPS S N AR

0.2

—— T Y L4

0 20 40 80 80

™

100

v

120

T T

140 160 180

Phi (degrees)
®

Blstatic RCS
3

— Exact
* OSRC using 81
*  OSRC using B2

‘00 Y Ty yeerT———T—————y
o 20 490 80 8¢ 100 120 140 160 180
Phi (degrees)
)
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wide (30 dB) dynamic range. The solution to (46) can be
accurately approximated by using the WKBJ method for k& =
5 {28). There an approximate formula for an arbitrary convex
target is derived by the same technique.

For TM polarization, the electric field is tangent to the
target’s surface and thus the OSRC method gives a simple
algebraic expression for the longitudinal surface current
density J;:

+jk feos ¢~1)-/k-{7

! ¢cos ¢+j—k sin? ¢] eikene  (47)
2 2

The OSRC predicted bistatic radar cross section patterns for a
ka = 1and ka = 10 cylinder are plotted in Fig. 9(a) and (b).
The OSRC results for the B, operator are again seen to
demonstrate excellent agreement with the exact solution over a
substantial dynamic range.

The application of OSRC to a basic three-dimensional
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convex target was first illustrated by modeling scattering by a
soft acoustic sphere [24). It was next applied to an acoustic
sphere loaded with a constant impedance. Because this
problem is solved in {25], only one example is presented here.
In this example, an acoustic plane wave propagating inthe -z
direction ir1pinges upon a spherical target of radius a having a
constant nonnalized surface impedance of Z = 10. Condition
(43e) is applied to the surface of the sphere. After inserting
(43e) into (45), a second-order partial differential equation
results for the surface currents, whose solution is approxi-
mated by a simple two-term asymptotic expansion and is then
used to determine the far fields. Fig. 10 shows the backscat-
tered cross section versus k. Again, there is excellent
agreement with the exact solution.

C. Application to Scattering from Reentrant Structures

The second area of application illustrates using OSRC to
model scattcring by simple reentrant structures. We consider
the problem of a plane wave impinging on the open end of a
semi-infinite flanged parallel-plate v aveguide (29), shown in
Fiz. 11. A plane wave, at an angle o measured counterclock-
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Fig. 11. Planc wave incident on op:a end of flanged, s~mi-infinite parallel-

plate waveguide. @ = 1.5 m, f = 250 MHz,

wise with reference to the — z axis, illuminates the mouth of
the waveguide. The flange and the walls of the guide are
assumed to be perfectly conducting. The incident wave U’ is
considered to be the y component E, of the incident electric
field vector. Thus, for the boundary conditions shown, TE
modes are excited inside the guide. The operator (42d), with «
= 0, is applied to the field representations valid in the guide
aperture and yields an expression for the coefficients in the
moda] representation of the waveguide fields. Knowledge of
the modal coefficients then permits the derivation of a simple
expression for the bistatic radar cross section of the field
scattered by the aperture, and the fields penetrating into the
waveguide. Results of calculations using this approach are
presented in Figs. 12 and 13. Fig. 12 shows the bistatic cross
section for a plane wave at a = 0°. Fig. 13 show the
magnitude and phase distribution of the field penctrating the
guide at a distance of z = 2 m from the aperture. The OSRC
results are compared to results obtained by FD-TD simula-
tions. Excellent agreement is cbserved. The value of the
OSRC solution is striking in its simple form and negligible
computational requirements.

V. FUTURE RESEARCH

Research on radiation boundary operators is presently
directed at two basic goals. The first is the development of
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better truncation coaditions for finite-difference and finite-
clement grids. This is aimed at reducing nonphysical reflec-
tions from the outer grid boundary which contribute to the
numerical noise floor of the modeling procedure. Reducing the
numerical noise floor will allow the simulation of scatterers
with wider dynamic range. The second goal is the develop-
ment of optimal mode-annihilating radiation boundary opera-
tors for the OSRC method.
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The work on operators for truncating FD-TD and FE-TD
grids fall into two basic categories. The first category is the
synthesis of wide-angle radiation boundary operators. Al-
though there are two basic typss of radiation boundary
operators, the maie thrust of the research is directed towards
one-way wave equation approximations. Here, work is pro-
ceeding in deriving approximations to the dispersion relaton
that will absorb waves over a wide range of angles properly
taking into account anisotropy and dispersion of numerical
mode phase velocities. The second category concems the
difference approximation for the operator. This is crucial for
the operation of the boundary condition, because a perfectly
valid operator which is not properly converted to a finite-
difference equation, may cause instabilities in the simulation.

In contrast to the work on the grid truncation operators, the
work on surface boundary conditions for the OSRC method is
based on the optimization of the mode-annihilating radiation
boundary operators. A key goal of this research is to produce a
surface boundary condition which can better predict tangential
energy propagation along the target’s surface. Presenty, two
methods are being investigated for this purpose. The first
method postulates a special multiplicative operator that models
tangential propagating waves. The second method depends
upan the application of the OSRC in the time domain to obtain
@ target impulse response [30]. The idea is to adjust the
coefficients in the operator to match the exact response over a
wide frequercy range. Finally, the nperators are also being
examined to assess their ability to predict the correct current
singularities on targets with edges.
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" nis paper reviews the busis and applications of the inwv liflerence time-domain (FD-TD) numerical modeling approach

. for Maxwell’s equations. FD-TD is very simple in concept ana execution. However, it is remarkably robust, providing highly
accurate modeling predictions for 3 wide variety of electromagnetic wave interaction problems. The accuracy and breadth

of FD-TD applications will be illustrated by a nuinber of (wo- and three-dimensional examples. The objects modeled range

in nature from simple geometnc shapes to extremely complex ae ospace and biological systems. In all cases where rigorous

analytizal, code-to-code, or experimental validations are possible, FD-TD predictive data for penetrating and scattered near

fields as well as radar cross sections are in excellent agreement with the benchmarks. It will also be shown that opportunities

are arising in applying FD-TD to model rapidly time.varying systems, microwave circuits, and inverse scattering. Wih

continuing advancas in FD-TD modeling thecry as well as continuing 4'snces in supercomputer technology. there is a

® sirang possibility that F1 -TD num-ri:al modeling will occupy an important piace in high-frequency engineering electroma, -

netics as we move into the 1990s.

1. Introduction

Accurate numerical modeling of full-vector elec-
tromagnetic wave interactions with arbitiary struc-
tures is difficult. Typic-' structures of engineering
interest have shapes, apertures, cavities, and
matenal compositions or surface loadings which
produce near fields that cannot be resolved into
finite sets of modes or rays. Proper numerical
modeling of such near felds requires sampling at
sub-wavelength resolution to avoid aliasing of
magni.ade and phase information. The goal is to
provide a self-consistent model of the mutual
coupling of the electrically-small cells comprising
the strucrure.

This paper reviews the formulation and applica-
tiuns of a candidate numerical modeling approach
for this purpose: the finite-difterence time-domain
(FD-TD) solution of Maxwell's curl equations.

FD-TD is analogous to existing finite-difference
solutions of scalar wave propagatior and uid-flow
problems in that the numerical mode!l is based
upon a direct solutica of the goveining partis!
differential equation. Yet, FD-TD is a nontradi-
tional approach to numerical electromagnetic
wave modeling of complex structures for engineer-
ing anplications, where frequency-demain integral
equa‘ion approaches such as tie method of
moments have dominated for 25 years (see the
article by Umashankar in this issue).

One of the goals of this paper is to demonstrate
that recent advances in FD-TD modeling concepts
and software implementation, combined with
advauces in computer technology, have expanded
the scope, accuracy, and speed of FD-TD modeling
to the point where it may be the preferred choice
for centain types of electromagnetic wave penetra-
tion, scattenng, guiding, and inverse scattering

0143-2125,88/93.50 © 1988, Elsevier Science Publishers 8. V. (North-Holland)
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problems. With this in mind, this paper will suc-
cinctly review the following FD-TD modeling vali-
dations and examples:

(1) electromagnetic ~ wave
dimensions:

(a) square metal cylinder, TM polarization,

(b) circular muscle-fat layered cylinder, TE

polarization,

(c) homogeneous, anisotropic, square material

cylinder, TM polarization,

(d) circular metal cylinder, conformally

modeled, TE and TM polarization,

(e) flanged metal open cavity,

(f) relativistically vibrating mirror, oblique

incidence;
(2) electromagnetic
dimensions:

(a) metal cube, broadside incidence,

(b) flat conducting plate, multiple monostatic

looks,

(c) T-shaped conducting target, multiple mono-

static looks;
(3) electromagnetic wave penetration and coup-
ling, two and three dimensions:

(a) narrow slots and lapped joints in thick

screens,

(b) wires and wire bundles in free space and in

a metal cavity;
(4) very complex three-dimensional structures:

(a) missile seeker section,

(b) inhomogeneous tissue model of the entire

human body;
(5) microstrip and microwave circuit models,
(6) inverse scattering reconstructions in one and
two dimensions.

Finally, this paper will conclude with a discus-
sion of computing resources for FD-TD and the
potential impact of massively concurrent
machines.

scattering, two

‘wave scattering, three

2. General characteristics of FD-TD

As stated, FD-TD is a direct solution of Max-
well's time-dependent curl equations. It employs

A30

no .potential. Instead, it applies simple, second-
order accurate central-difference approximations
[1] for the space and time derivatives of the electric

‘and magnetic. fields directly to the respective

differential operators of the curl equations. This
achieves a sampled-data reduction of the con-
tinuous electromagnetic field in 4 volume of space,
over a period of time. Space and time discretiz-
ations are selected to bound errors in the sampling
process, and to ensure numerical stability of the
algorithm [2]. Electric and magnetic field com-
ponents are interleaved in space to permit a natural
satisfaction of tangential field continuity condi-
tions at media interfaces. Overall, FD-TD is a-
marching-in-time procedure which simulates the
continuous actual waves by sampled-data numeri-
cal analogs propagating in a data space stored in
a computer. At each time step, the system of
equations to update the field components is fully
explicit, so that there is no need to set up or solve
aset of linear equations, and the required computer
storage and running time is proportional to the
electrical size of the volume modeled.

Figure 1(a) illustrates the time-domain wave
tracking concept of the FD-TD method. A region
of space within the dashed lines is selected for
field sampling in space and time. At time =0, it is
assumed that all fields within the numerical samp-
ling region are identically zero. An incident plane
wave is assumed to enter the sampling region at
this point. Propagation of the incident wave is
modeled by the commencement of time-stepping,
which is simply the implementation of the finite-
difference analog of the curl equations. Time-step-
ping continues as the numerical analog of the
incident wave strikes the modeled target embedded
within the sampling region. All outgoing scattered
wave analogs ideally propagate through the lattice
truncation planes with negligible reflection to exit
the sampling region. Phenomena such as induction
of surface currents, scattering and multiple scatter-
ing, penetration through apertures, and cavity exci-
tation are modeled time-step by time-step by the
action of the curl equations analog. Self-
consistency of these modeled phenomena is gen-

...,
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Fig. 1. Basic elements of the FD-TD »ace lattice: (a) time-
domain wave tracking concept; (b) lattice unit cell in Cartesian
coordinates.

erally assured if their spatial and temporal vari-
ations are well resolved by the space and time
sampling process.

Time-stepping is continued until the desired
late-time pulse response or steady-state behavior
is observed. An important example of the latter is
the sinusoidal steady state, wherein the incident
wave is assumed to have a sinusoidal dependence,
and time-stepping is continued until all fields in
the sampling region exhibit sinusoidal repetition.
This is a consequence of the limiting amplitude
principle {3). Extensive numerical experimenta-
tion with FD-TD has shown that the number of
complete cycles of the incident wave required to
be time-stepped to achieve the sinusoidal steady

state is approxin itely equal o the Q-factor of the
structure or phe: omenon being modeled.

Figure 1(b) ill...: ~ates the positions of the elec-
tric and magnetic field components about a unit
cell of the FD-TD lattice in Carntesian coordinates
{1]. Note that each magnetic field vector com-
ponent is surrounded by four circulating electric
field vector components, and vice versa. This
arrangement permits not only a centered-difterence
analog to the space derivatives of the curl
equations, but also a natural geometry for
implementing the integral form of Faraday's Law
and Ampere's Law at the space-cell level. This
integral interpretation permits a simple but
effective modeling of the physics of thin-slot coup-
ling, thin.wire coupling, and smoothly curved
target surfaces, as will be seen later.

Fig. 2. Arbitrary three-dimensions! scatterer embedded in an
FD-TD lattice.

Figure 2 illustrates how an arbitrary three.
dirnensional scatterer is embedded in an FD-TD
space lattice comprised of the unit celis of Fig.
1(b). Simply, the desired values of electrical per.
mittivity and conductivity are assigned to each
electric field component of the lattice. Correspond-
ingly, desired values of magnetic permeability and
equivalent conductivity are assigned to each mag-
netic field component of the lattice. The media
parameters are interpreted by the FD-TD program
as local coeflicients for the time-stepping
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algorithm. Specification of media properties in this
component-by-component manner results in a
stepped-edge, or staircase approximation of
curved sucfaces. Continuity of tangential ficlds is
assured at the interface of dissimilar media with
this procedure. There is no need for special field
matching at media interface points. Stepped-edge
approximation of curved surfaces has been found
to be adequate in the FD-TD modeling problems
studied in the 1970s and early 1980s, including
wave interactions with biological tissues (4],
penetration into cavities (5, 6], and electromag-
netic pulse (EMP) interactions with complex struc-
tures [7-9]. However, recent interest in wide
dynamic range models of scattering by curved
targets has prompted the development of surface-
conforming FD-TD approaches which eliminate
stair-casing. These will be summarized later in this

paper.
3. Basic FD-TD slgorithm details

3.1. Maxwell's equations

Consider a region of space which is source-fres
and has constitutive electrical parameters that are
independent of time. Then, using the MKS system
of units, Maxwell's curl equations are given by

M leve-Ex, (n
at i K

3F 1

;-;VxH--E (2)

where E is the electric field in volts/meter; H is
the magnetic field in amperes/meter; # is the elec-
trical permittivity in farads/meter; o is the elec-
trical conductivity in  mhos/meter  (sie-
mens/meter); u is the magnetic permeability in
henrys/meter; and p’' is an equivalent magnetic
resistivity in ohms/meter. (The magnetic resistivity
term is provided to yield symmetric curl equations,
and allow for the possibility of a magnetic field
loss mechanism.) Assuming that ¢, o, u, and p’
are isotropic, the following system of scalar
equations is equivalent to Maxwell s curl equations

in the rectangular coordinate system (x, », 2):

dH, 1| (JE, 3JE, )

e - p'H, ), 3

ot (az dy P (3a)
(E-ﬁ—p H,) (3b)

oH, 1(35 e pn), (30

at  m\ady

LT LRS) 4a)

a e\dy a2

L (2B ), 4b)

a1 e\dz ox

a—E—‘a-l-(a—F{z-gi-UE,). (4¢)

at ax 3y

The system of six coupled partial differential
equations of (!) and (4) forms the basis of the
FD-TD algorithm for electromagnetic wave inter-
act'ons with general three-dimensional objects.
Before proceeding with the details of the
algorithm, it is informative to consider one impor-
tant simplification of the full three-dimensiona!l
case. Namely, if we assume that neither the
incident plane wave excitation nor the modeled
geometry has any variation in the z-direction (i.e.,
all partial derivatives with respect to z equal zero),
Maxwell's curl equations reduce to two decoupled
sets of :calar equations. These decoupled sets,
termed the transverse magnetic (TM) mode and
the transverse electric (TE) mode, describe two-
dimensional wave interactions with objects. The
relevant equations for each case follow:

- TM case (E,, H,, and H, field components only)

aH, AE,

Y “(ay H,). (sa)
aH, 1 [3E, )

—la - 5b
at (a: o'Hy ). (3b)
Es-l(aﬂ _B_’i_aE:); (s¢)
ar e\dx dy
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- TE case (H,, E,, and E, field components only)

dE, 1 [dH,

—_— | — 6
Py e(ay OE.). (6a)
%, . -l(iiws,), (60)
at e\ dx

&t u\dy dx

3.2. The Yee algorithm

In 1966, Yee [1] introduced a set of finite-
difterence equations for the system of (3) and (4).
Following Yee's notation, we denote a space point
in a rectangular lattice as

(i,j k)= (i Ax,j Ay, kAz) (7a)
and any function of space and time as
F (i, j k)= F(i Ax,j Ay, k Az, n Ar) (7b)

where Ax, Ay, and Az are, respectively, the lattice
space increments in the x-, y-, and z-coordinate
directions; Ar is the time increment; and |, j, k,
and n are integers. Yee used centered finite-
difference expressions for the space and time
derivatives that are both simply programmed and
second-order accurate in the space and time incre-
ments respectively:

aF"(i, j, k)

ax
(R YL Ul WL BN
Ax
(8a)
3F"(i, J, k)
at
ne|/2 . — -2
ET k) -F ("J’k)+0(.\:’).
At
(8b)

To achieve the accuracy of (8a), and to realize
all of the required space derivatives of the system
of (3) and (4), Yee positioned the components of
E and H about a unit cell of the lattice as shown

in Fig. 1{b). To achieve the accuracy of (8b), he
evaluated E and H at alternate half time steps.
The following are sample finite-difference time-
stepping expressions for a magnetic and an electric
field component resulting from these assumptions:

HI' G j+h k+)
Ll jth ke bar

Zu(i._Lﬁ'i,k'*i) RET 2 EI VR PR

PGyl kehar kD
+

2u(ij+i k+4)

. At [ p'(i,j+§,k+§)..\t]"
ulij+l k+}) uli j+h k+i)
x{[E3G,j+} k+1)

=E)(1,j+4, K))/ Az
+[ENLj k+1)
-E;(i,j+1,k+H)/ay}, (9)

E;"'ij k+})

l_a(i, A k+bare
2e(ij k+})
o(i, f, k+ar
2e(ijk+})

: E:(‘vjvk"-;)

. At [ a(i,j.k+§).):]"
e(i,j, k+1) 2e(ij, k+1)
x{(H}* i+ k+b
~H™' (i =4, ), k+ D)/ 3x
+[(HT =4 k+d)

-HTV G j+4 k+D)/Ay). (10)

With the system of finite-differance equations
represented by (9) and (10), the new value of a
field vector component at any fattice point depends
only on its previous value and on the previous
values of the components of the other field vector
at adjacent points. Therefore, at any given time
step, the computation of a field vector can proceed
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either one point at a time; or, if p parallel pro-
cessors are employed concurrently, p points at a
time.

3.3. Numerical siability

To ensure the stability of the time-stepping
algorithm exemplified by (9) ard (10), A1 is chosen
to satisfy the inequality [2, 10]

1 1 1 }-I/2

O v

(1)

where .. IS the maximum electromagnetic wave
phase velocity within the media being modeled.
Note that the corresponding numerical stability
criterion set forth in (7) and (8) of reference (1]
is incorrect (cf. [2]). For the TM and TE two-
dimensional modeling cases, it can be shown [10]
that the modified time-step limit for numerical
stability is obtained from (11) simply by setting
Az =,

3.4. Numerical dispersion

The numerical algorithm for Maxwell's curl
equations represented by (9) and (10) causes dis-
persion of the simulated wave modes in the compu-
tational lattice. That is, the phase velocity of
numerical modes in the FD-TD lattice can vary
with modal wavelength, direction of propagation,
and lattice discretization. This numerical disper-
sion can lead to nonphysical results such as pulse
distortion, artificial anisotropy, and pseudorefrac-
tion. Numerical dispersion is a factor in FD-TD
modeling that must be accounted to undersiand
the operation of the algorithm and its accuracy
limits,

Following the analysis in [10], it can be shown
that the numerical dispersion relation for the three-
dimensional case represented by (9) and (10) is
given by

2
(éf-) sin(Jwdr) = A—L—, sin® (Jk, Ax)

1 1
+—sin? +—sin®(dk.Az 2
3 sin’(1k,Ay) rvihi k. A2)  (12)

where k., k,, and k, are, respectively, the x-, y-,
and z-components of the wavevector; w is the wave
angular frequency; and c¢ is the speed of light in
the homogeneous material being modeled.

In contrast to the numerical dispersion relation,
the analytical dispersion relation for a plane wave
in a continuous, lossless medium is just

Wit =ki+ki+k: (13)

for the three-dimensional case. Although, at first
glance, (12) bears little resemblance to the ideal
case of (13), we can easily show that {12) reduces
10 (13) in the limit as 3¢, Ax, Ay, and Az all go to
zero. Qualitatively, this suggests that numerical
dispersion can be reduced to any degree that is
desired if we only use a fine-enough FD-TD
gridding. .

To quantitatively illustrate the dependence of
numerical dispersion upon FD-TD grid discretiz-
ation, we shall take as an example the two-
dimensional TM case (A2 = <¢), assuming for sim-
plicity square unit cells (Ax =3y =J3) and wave
propagation at an angle a with respect to the
positive x-axis (k, = k cos a; k, =k sin a). Then,
dispersion relation (12) simpiifies to

2
(%) sin (Jwdr)

=sin’(k cos a A) +sin’(tk sin a A).
(14)

Equation (14) can be conveniently solved for the
wavevector magnitude, k, by applying Newton's
method. This process is especially convenient if A
is normalized to the free-space wavelength.
Figure 3(a) provides results using this procedure
which illustrate the variation of numerical phase
velocity with wave propagation angle in the FD-
TD grid. Three different grid resolutions of the
propagating wave are examined: coarse (A,/S);
normal (A,/10); and fine (Ay/20). For each reso-
lution, the relation cAt = }A was maintained. This
trelation is commonly used in two- and three-
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dimensional FD-TD codes to satisfy the numerical
stability criterion of (11) with ample safety margin.
From Fig. 3(a), it is seen that the numerical phase
velocity is maximum at 45° (oblique incidence),
and minimum at 0° and 90° (incidence along either
Cantesian grid axis) for all grid resolutions. This
represents a numerical anisotropy that is inherent
in the Yee algorithm. However, the velocity error
relative to the ideal case diminishes by approxi-
mately a 4: 1 factor each time that the grid cell size
is halved, so that the worst-case velocity error for
the normal resolution case is only -1.3%, and only
=0.31% for the fine resolution case.

Figure 3(bt) graphs the variation of numerical
phase velocity with grid resolution at the fixed
incidence angles, 45° and 0° (90°). Again, the rela-
tion cAr = A was maintained for each resolution.
Here, it is seen that the numerical phase velocity
at each angle of incidence diminishes as the propa-
gating wave is more coarsely resolved, eventually
reaching a sharp threshold where the numerical
phase velocity goes to zero and the wave can no
longer propagate in the FD-TD grid. This rep-
resents a numerical low-pass filtenng effect that is
inherent in the Yee algorithm, wherein the
wavelength of propagating numerical modes has
a lower bound of 2 to 3 space cells, depending
upon the propagation direction. As a result, FD-
TD modeling of pulses having finite duration (and
thus, infinite bandwidth) can result in progressive
pulse distortion as higher spatial frequency com-
ponerts propagate more slowly than lower spatial
frequency components, and very high spatial
frequency components with wavelengths less than
210 3 cells are rejected. This numerical dispersion
causes broadening of finite-duration pulses, and
leaves a residue of high-frequency ringing on the
trailing edges due to the relatively slowly propagat-
ing high-frequency components. From Figs. 3(a)
and 3(b), we see that pulse distortion can be
bounded by obtaining the Fourier spatial

frequency spectrum of the desired pulse, and
selecting a gnd cell size so that the principal spec-
tral components are resolved with at least 10 cells

per wavelength. This would limit the spread of
numerical phase velocities of the principal spectral
components to less than 1%, regardless of the wave
propagation angle in the grid.

In addition to numerical phase velocity
anisotropy and pulse distortion eftects, numerical
dispersion can lead to pseudorefraction of propa-
gating modes if the grid ceil size is a function of
position in the grid. Such variable-cell gridding
would also vary the grid resolution of propagating
numerical modes, and thereby perturb the modal
phase velocity distribution. This would lead (o
nonphysical reflection and refraction of numerical
modes at interfaces of grid regions having diflerent
cell sizes (even if these interfaces were located in
free space), just as physical waves undergo reflec-
tion and refraction at interfaces of dielectric media
having different indices of refraction. The degree
of nonphysical refraction is dependent upon the
magnitude and abruptness of the change of the
modal phase velocity distribution, and can be esti-
mated using conventional theory for wave refrac-
tion at dielectric interfaces.

We have stated that, in the limit of infinitesimal
Arand A, (12) reduces to (13), the ideal dispersion
case. This reduction also occurs if &1, 3, and the
direction of propagation are suitably chosen. For
example, in a three-dimensional cubic lattice,
reduction to the ideal dispersion case can be
demonstrated for wave propagation alonyg a lattice
diagonal (k,=k, =k, =k/v3) and Ar=3/cV3
(exactly the limit set by numerical stability).
Similarly, in a two-dimensional square grid, the
ideal dispersion case can be demonstrated for wave
propagation along a grid diagonal (k, = k, = k/v?)
and A1 = 3/cv?2 (again the limit set by numerical
stability). Finally, in one dimension, the ideal case
is obtained for At=A/c (again the limit set by
numerical stability) for all propagating modes.

3.5. Lauitice zoning and plane wave source condition

The numerical algorithm for Maxwell's curl
equations defined by the finite-difterence system
reviewed above has a linear dependence upon the
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components of the electromagnetic field vectors.
Therefore, this system can be applied with equal
validity to either the incident-field vector com-
ponents, the scattered-field vector components, or
the total-field vector components (the sum of
incident plus scattered). Present FD-TD codes util-
ize this property to zone the numerical space lattice
into two distinct regions, as shown in Fig. 4(a),
separated by a rectangular virtual surface which
serves Lo connect the fields in each region (11, 12].

Region !
e ~1 Torol
N"'!OG'IH’ f
Srrysture [~ Finds
OJ ——Regon 2
Connecring{__| S:atrered
Swrioze Ang Fieids
;wm wove
Qurie \
Lortice
Truncation
(Y2l
8w (T WY
j- - PR - Formcce com—-
UL R CHONN ) !
' f NLGIoN : .
i : H '
' i ' o soumcxs |
. o 4° — N . !
' TYER e LOMROS
: OoBJECT :g. .c '
cmemmmn e o= [
TINTAL AL ’.;“ o, ﬂ.- T

i

Fig. 4. Zoning of the FD-TD Isttice: (3) total field and scattered
field regions, (b) near-t0-far field integration surface located
in the scattered feld region.

Region 1, the inner region of the FD-TD lattice,
is denoted as the total-field region. Here, it is
assumed that the finite-difference system for the
curl equations operates on total-field vector com-
ponents. The interacting structure of interest is
embedded within this region.

Region 2, the outer region of the FD-TD lattice,
is denoted as the scattei «d-field region. Here, it is
assumed that the finite-difference system for the
curl equations operates .»nly on scattered-field vec-
tor components. Thi. implies that there is no
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incident wave in Region 2. The outer lattice planes
bounding Region 2, called the lauice truncation
planes, serve to implement the free-space radiation
condition (discussed in the next section) which
simulates the ficld sampling space extending to
infinity.

The total-field/scattered-field lattice zoning
illustrated in Fig. 4(a) provides a number of key
features which enhance the computational flexibil-
ity and dynamic range of the FD-TD method:

Arbitrary incident wave. The connecting condi-
tion provided at the interface of the inner and outer
regions, which assures consistency of the numeri-
cal space derivative operations across the interface,
simultaneously generates an arbitrary incident
plane wave in Region | having a user-specified
time waveform, angle of incidence, and angle of
polarization. This connecting condition, discussed
in detail in {10), almost completely confines the
incident wave to Region | and yet is transparent
to outgoing scattered wave modes which are free
to enter Region 2.

Simple programming of inhomogeneous struc-
tures. The required continuity of total tangential
E and H fields across the interface of dissimilar
media is automatically provided by the original
Yee algoritam if the media are located in a zone
(such as Region 1) where total fields are time-
marched. This avoids the problems inherent in a
pure scatiered-field code, where enforcement of
the continuity of total tangential fields is a separate
process requiring the incident field to be computed
at all interfaces of dissimilar media, and then
added to the values of the time-marched scattered
fields at the interfaces. Clearly, computation of the
incident field at numerous points along possibly
complex, structure-specific loci is likely to be much
more involved than computation of the incident
field only along the simple connecting surface
between Regions 1 and 2 (needed 10 implement
the total-field/scattered-field zoning). The latter
surface has a fixed locus that is independent of
the shape or complexity of the interaction structure
that is embedded in Region 1.
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Wide computational dynamic range. Low levels
of the total field in deep shadow regions or cavities
of the interaciion structure are computed directly
by time-marching total fields in Region 1. In a pure
scattered-field code, however, the low levels of
total field are obtained by computing the incident
field at each desired point, and then adding to the
values of the time-marched scattered fields. Thus,
it is seen that a pure scattered-field code relies
upon near cancellation of the incident and scat-
tered field components of the total field to obtain
accurate results in deep shadow regions and
cavities. An undesirable hallmark of this cancella-
tion is contamination of the resultant low total-field
levels by subtraction noise, wherein ¢light percen-
tage errors in calculating the scattered fields result
in possibly very large percentage errors in the
residual total fields. By time-marching total fields
directly, the zoned FD-TD code avoids subtraction
noise in Region 1 and and achieves a computa-
tional dynamic range more than 30 dB greater than
that for a pure scattered-field code.

Far-field response. The provision of a well.
defined scattered-field region in the FD-TD lattice
permits the near-to-far-field trausformation illus-
trated in Fig. 4(b). The dashed virtual surface
shown in Fig. 4(b) can be located along convenient
lattice planes in the scattered-field region of Fig.
4(a). Tangential scattered E and H fields com-
puted via FD-TD at this virtual surface can then
be weighted by the free-space Green’s function
and th=n integrated (summed) to provide the far-
field response and radar cross section (full bistatic
response for the assumed illumination angle) [12-
14]. The near-field integration surface has a fixed
rectangular shape, and thus is independent of the
shape or composition of the enclosed structure
being modelad.

3.6. Radiation condition

A basic consideration with the FD-TD approach
to solve electromagnetic wave interaction prob-
lems is that mos: computational domains of inter-
est are ideally unbounded or “'open’. Clearly, no
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computer can store an unlimited amount of data,
and therefore, the field computation zone must be
limited in size. A suitable boundary condition on
the outer perimeter of the computation zone must
be used to simulate the extension of the computa-
tion zone to infinity. This boundary condition must
be consistent with Maxwell’s equations in that an
outgoing vector scattered-wave numerical analog
striking the lattice truncation must exit the tattice
without appreciable nonphysical reflection, just as
if the lattice truncation was invisible.

Now, the vector field components at the lattice
truncation planes cannot be computed using the
centered-diffcrencing approach discussed earlier
because of the assumed absence of known field
data at points outside of the lattice truncation
(which are needed to form the central differences).
It has besn shown that a suitable lattice truncation
is provided by implementing a near-field radiation
condition separately for each of the Cartesian
tangential electric (or magnetic) vector com-
ponents present in the truncation planes [11-13].
In FD-TD codes 1o date, the radiation condition
used is a Pade {2,0) interpolant of the factored
(one-way) wave equation [15, 16] as differensed
in [11]. Higher-order Pade (2,2) and Chebyshev
(2, 2) interpolants are currently under study for
numerical implementation in the FD-TD computer
programs (17].

4. FD-TD modeling validations for electromagnetic
wave scattering, two dimensioas

Analytical and code-to.code validations have
been obtained relative to FD-TD modeling of elec-
tromagnetic wave scattering for a wide variety of
canonical two-dimensional structures. Both con-
vex and re-entrant (cavity-type) shapes have been
studied; and structure material compositions have
included perfect conductors, homogeneous and
wahomogeneous lossy dielectrics, and anisotropic
dielectric and permeable media. Selected valida-
tions will be reviewed here.
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4.1. Square metal cylinder, TM polarization [ 12]'

Here. we consider the scattering of a TM-polar-
ized plane wave obliquely incident upon a square
metal cylinder of electrical size X.s =2, where s is
the side width of the cylinder. The square FD.TD
grid cell size is set equal to s/20, and the grid
truncation (radiation boundary) is iocated at a
uniform distance of 20 cells from the cylinder
surface,

Figure S compares the magnitude and phase of
the cylinder surface electric current distribution
computed using FD-TD to that computed using a
benchmark code which solves the frequency-
domain surface electric field integral equation
(EFIE) via the method of moments (MOM). The
MOM code assumes target symmetry and discret-
izes one-half of the cylinder surface with 84
divisions. The FD-TD computed surface current
is taken as ax H,,, whers & is the unit normal
vector at the cylinder surface, and H,,, is the
FD-TD value of the magnetic field vector com-
ponent in free space immediately adjacent to the
cylinder surface. From Fig. 5. we see that the
magnitude of the FD-TD computed surface current

o]

MOM ( 80 - Point Sotution)
essas FD.TO{3-Cycle Solution)

301

00 -+
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agrees with the MOM solution to better than £1%
(z0.09dB) at all companson points more than
2 FD-TD cells from the cylinder corners (current
singularities). The phase of the FD-TD solution
agrees with the MOM solution to within £3° at
virtually every comparnison point, including the
shadow region.

4.2. Circular muscle-far layered cviinder, TE
polarization (18]

Here, we consider the penetration of a TE-polar-
ized plane wave into a simulated biological tissue
structure represented by a 15 cm radius muscle-fat
layered cylinder. The inner layer (radius =7.9 cm)
is assumed to be comprised of muscle having a
relative permittivity of 72 and conductivity of
0.9 S/m. The outer layer is assumed to be com-
prised of fat having a relative permittivity of 7.5
and conductivity of 0.48S/m. An illumination
frequency of 100 MHz is modeled, with the FD-TD
grid cell size set equal to 1.5 cm {(approximately
1/24 wavelength within the muscle). A stepped-
edge (staircase) approximation of the circular layer
boundaries is used.

240° MOM (80 - Point Solution)

<270 w044 FO.TD (S -Cycle Sownen) }

-300° + +
-] L] ¢

Positien On Cyhinder Surtace

ot

Fig. 3. Comparison of FD-TD and frequency-domain surface electric field integral equation results for longitudinal surface electric
current distribution on a kes = 2 square metal cylinder, TM case: (a) magnitude; (b) phase {12).
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Fig. 6. Comparison of FD-TD and exact solutions for penetrating electric field vector components within a 1§ cm radius, circular,
muscle.fat layered cylinder, TE polarization, 100 MHz (18).

Figure 6, taken from [18], shows the analytical
validation results for the magnitude of the
penetrating electric field vector components 2long
two cuts through the muscle-fat cylinder, one
parallel to the direction of propagation of the
incident wave, and one parallel to the incident
etectric field vector. The exact solution is obtained
by summing sufficient terms of the cigenfunction
expansion to assure convergence of the sum. Excel.
lent agreement of the FD-TD and exact solutions
is noted, even at jump discontinuities of the field
(and at jump discontinuities of the slope of the
field distribution) that occur at the layer boun-
daries. This fine agreement is observed despite the
stepped-edge approximation of the circular fayer
boundaries.

4.3. Homogeneous, anisotropic, square material
cylinder, TM polarization [19]

The abilit* to independently specify electrical
permittivity and conductivity for each E vector
component in the FD-TD lattice, and magnetic
permeability and equivalent loss for each H vector
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component, leads immediately to the possibility of
using FD-TD to model material structures having
diagonalizable tensor electric and magnetic
properties. No alteration of the basic FD-TD
algorithm is required. The more complicated
behavior associated with off-diagonal tensor com.
ponents can also be modeled, in principle, with
some algorithm complications [20).

Recent development of coupled, surface, com-
bined-ficld integral equation (CFIE) theory for
modeling eclectromagnetic wave scattering by
arbitrary-shaped, two-dimensional, anisotropic
material structures [19]) has permitted detailed
code-to-code validation studies of FD-TD
anisotropic models. Figure 7 illustrates one such
study. Here, the magnitude of the equivalent sur-
face electric current induced by TM illumination
of a square anisotropic cylinder is graphed as a
function of position along the cylinder surface for
both the FD-TD and CFIE models. The incident
wave propagates in the +y-direction and has a
+z-directed electric field. The cylinder has an elec-
trical size kes = S, permittivity e,, = 2, and diagonal
permeability tensor . =2 and u,, =4. For the
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Fig. 7. Comparison of FD-TD and frequency-domain surface

combined-field integral equation resuits for longitudinal sur-

face electric current distribution on a kgs = § square 2nisotropic
cylinder, TM case [19].

case shown, the FD-TD grid cell size is set equal
to 5/50, and the radiatio:1 boundary is located at
a uniform distance of 20 cells from the cylinder
surface.

From Fig. 7, we see that the FD-TD and CFIE
results agree very well almost everywhere on the
cylinder surface, despite the presence of a compli-
cated series of peaks and nulls. Disagreement is
noied at the cylinder comers where CFIE predicts
sharp local peaks, but FD-TD predicts local nulls.
Studies are continuing to resolve this corner phys-
ics issue.

4.4. Circular metal cylinder, conformally modeled,
TE and TM polarization

A key flaw in previous FD-TD :r adels of con-
ducting structures with smooth curvea surfaces has

been the need to use stepped-edge (staircase)
approximations of the actual structure surface.
Although not a serious problem for modeling wave
penetration and scattering for low-Q metal
cavities, recent FD-TD studies have shown that
stepped approximations of curved walls and aper-
ture surfaces can shift center frequencies of res.
onant responses by 1% to 2% for Q factors of Ju
to 80, and can possibly introduce spunous nu'ls
(21]). In the area of scattering, the use of stepped
surfaces has limited application of FD-TD for
modeling the important class of targets where sur-
face roughness, exact curvature, and dielectric or
permeable loading is important in determining the
radar cross section.

Recently, two different types of FD-TD conflor-
mal surface models have been proposed and
examined for two-dimensional problems:

(1) Faraday's Law contour path models
(22]. These preserve the basic Cartesian grid
arrangement of field componenis at all space cells
except those adjacent to the structure surface.
Space cells adjacent to the surface are deformed
to conform with the surface locus. Slightly
modified time-siepping expressions for the mag-
netic (ield components adjacent to the sucface are
derived from the integral form of Faraday's Law
implemented atound the penmeters of the dao
formes celds. )

(2} Stretchea, conforming me:n medels (23, 24°.
Thricemp .oy available ningericg! mesh generatinn
shemx to canstruct non-Cartssian gnds which
nre contjpuopsly and giobally stretched (o confgrm
with smootnly shaped structures. Time-:teppk.g
expressions are either adap’ed from the Carteeian
FU-TO cwe [23] ot (btained via analngy o the
computational fluid dynar..ics (ormalism [24).

Research is ongoing for each of these types of
conformal surface models. Key questions<nclude:
ease of mesh generation; suppression of numerical
artifacts such as instability, dispersion, pseudore-
fraction, and subtraction noise limitation of com-
putational dynamic range; coding complexity; and
computer execution time. {See also the paper by
Madsen and Ziolkowski in this issue.)
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The accuracy of the Faraday's Law contour path
models for smoothly curved structures subjected
to TE and TM illumination is illustrated in Figs.
8(a) and 8(b) respectively. Here, a moderate-resol-
ution Cartesian FD-TD grid (having 1/20
wavelength cell size) is used to compute the
azimuthal or longitudinal electric current distribu-
tion on the surface of a koa =S5 circular metal
cylinder. For both polarnizations, the contour path
FD-TD model achieves an accuracy of 1.5% or
better at most surface points relative to the exact
series solution. Running time for the conformal
FD-TD model is essentially the same as for the
old staircase FD-TD model since only a few H
components immediately adjacent to the target
surface require a slightly modified time-stepping
relation.

4.5. Flanged metal open caviry [25]

Here, we consider the interaction of a TM-polar-
ized plane wave obliquely incident upon a flanged
metal open cavity. The open cavity is formed by
a flanged parallel-plate waveguide having a plate
spacing, a, of 1 m, short-circuited by a terminating
plate located at a distance, d, of 1 m from the
aperture. At the assumed illumination frequency
of 382 MHz, k,a = kod = 8, and only the first two
TE waveguide modes propagate within the open
cavity. An oblique angle of incidence, a =30°, is
assumed for this case.

Figure 9 compares the magnitude and phase of
the penetrating electric field within the cavity $ m
from the aperture computed using FD-TD to that
computed using 3 cavity modal expansion and
OSRC [25). Good agreement is seen. Figure 10
shows a similar comparison for the bistatic
radar cross section due to the induced aperture
field distribution. Again, good agreement is
noted.'

' It should be noted that the results obtained using the cavity
modai expansion and OSRC represent a good approximation,
but not a rigorous solution.

A42

4.6. Relativistically vibrating mirror, oblique
incidence [26]

Analytical validations have been recently
obtained for FD-TD models of reflection of a
monochromatic plane wave by a perfectly conduct-
ing surface either moving at 2 uniform relativistic
velocity or vibrating at a frequency and amplitude
large enough so that the surface attains relativistic
speeds [26]. The FD-TD approach of [26] is nove)
in that it does not require a system transformaticn
where the conducting surface is at rest. Irstzad,
the FD-TD grid is at rest in the laboratory frame,
and the computed field solution is given directly
in the laboratory frame. This is accomplished by
implementing the proper relativistic boundary con-
ditions for thie fields at the surface of the moving
conductor.

Figure 11 shows results for one of the more
interesting problems of this type modeled so far,
that of oblique plane wave incidence on an infinite
vibrating mirror. This case is much more compli-
cated than the normal incidence case, in that it has
no closed-form solution. An analysis presented in
the literature [27] writes the solution in an infinite-
series form using plane-wave expansions, where
the unknown coefficients in the series are solved
numencally. This analysis serves as the basis of
comparison for the FD-TD model results for the
time variation of the scattered field envelope at
points near the mirror.

Since it is difficult to model exactly an infinite
plane mirror in a finite two-dimensional grid, a
long, thin, rectangular perfectly-conducting slab is
used as the mirror model, as shown in Fig. 11(a).
Relativistic boundary conditions for the fields are
implemented on the front and back sides of the
slab. The other two sides, parallel to the velocity
vector, are insensitive to the motion of the slab,
and therefore no relativistic bcundary conditions
are required there. To minimize the effect of edge
diffraction, the slab length is carefully selacted so
that the slab appears to be infinite in extent at
observation point, P, during a well-defined early-
time response when the edge effect has not yet
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propagated (0 P. Since the TM case does not pro- and analytical results obtained from (27] for the
vide appreciably different results than the TE case envelope of the “catterea E field vs. time for an
{27), only the TE case is considered. From Fig. incident angle cf 30”, peak mirror speed 20% that

' 11{b), we see good agreement betw -en the FD-TD of light, and observation points 2/d = -5 and
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z2/d =-50, where kd =1. Similar agreement is
found for an even more oblique angle, 60° [26].
This agreement is satisfying since the action of the
relativistically vibrating mirror is so complicated,
generating a reflected wave having a spread both
in frequency and spatial reflection angle, ac well
as evanescent modes.

S. FD-TD modeling validations for electromagnetic
wave scattering, three dimensions

Analytical, code-to-code, and experimental vali-
dations have been obtained relative to FD-TD
modeling of efectromagnetic wave scattering for a
wide variety of canonical three-dimensional struc-
tures, including cubes, flat plates, and crossed
plates. Selected validations will be reviewed here.

5.1. Metal cube, broadside incidence [13]

Results are now shown forthe FD-TD computed
surface electric current distribution on a metal cube
subject to plane-wave illumination at broadside
incidence. The electric current distribution is com-




564 A. Taflove / Finite-difference time-domain method

pared to that computed by solving a frequency-
domain surface EFIE using a standard triangular
surface-patching MOM code [13]. It is shown that
a very high degree of correspondence exists
between the two sets of predictive data.

The detailed surface current study involves a
cube of electrical size kos =2, where s is the side
width of the cube. For the FD-TD model, each
face of the cube is spanned by 400 square cells
(20 x 20), and the radiation boundary is located at
2 uniform distance of 15 cells from the cube sur-
face. For the MOM model, each face of the cube
is spanned by either 18 triangular patches or 32
triangular patches (to test the convergence of the
MOM model). Comparative results for surface
current are graphed along two straight-line loci
along the cube: abed, which is in the plaae of the
incident magnetic field; and ab’c’d, which is in
the plane of the incident electric field.

Figure 12 compares the FD-TD and MOM
results for the magnitude and phase of the surface
current along ab’c’d. The FD-TD values agree with
the high-resolution MOM data to better than
£2.5% (+0.2dB) at all comparison points. Phase
agreement for the same sets of data is better than
£1° (The low-resolution MOM data have a phase
anomaly in the shadow region.) In Fig. 13, compar-
ably excellent agreement is obtained along abcd,
but only after incorporation of an edge correction
term in the MOM code {28] to enable it 1o properly
model the current singularities at the cube corners,
bhandc

3.2. Flat conducting plate, multiple monostatic
looks [ 14, 20]

We next consider a 30 cm x 10 ¢cm % 0.65 cm flat
conducting plate target. At 1 GHz, where the plate
spans | wavelength, a comparison is made between
FD-TD and MOM results for the monostatic radar
cross section (RCS) vs. look-angle azimuth (keep-
ing a fixed elevation angle), as shown in Fig. 14(a).
Here, the FD-TD model uses a uniform cell size
0f 0.625 cm (Ao/48), forming the plate by 48 x 16 x
1 cells. The radiation boundary is located at a
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Fig. 12. Comparison of FD-TD and frequency-domain surface

electnic fieid integral equation results for surface electric cucrent

distribution along the E-plane locus, abc'd, of the kos =2
metal cube: (a) magnitude; (b) phase (13].

uniform distance of only 8 cells from the plate
surface. For the MOM model, study of the conver-
gence of the computed broadside RCS indicates
that the plate thickness must be accounted by
using narrow side patches, and the space resolution
of each surface patch should be finer than approxi-
malely 0.2 wavelength. As a result, the MOM
model forms the plate by 10 x 3 x 1 divisions, yield-
ing a total of 172 triangular surface patches. Figure
14(a) shows excellent agreement between the two
models (within about £0.2 dB).

At § GHz, the plate spans 9 wavelengths, and
the use of the MOM model is virtuaily precluded.

M pt e E e e e ——n - w e & ot s s 2 8 B -
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If we follow the convergence guidelines discussed
above, the plate would require approximately 50 x
15x 1 divisions to properly converge, yielding 2
total of 3260 triangular surface patches, and requir-
ing the generation and inversion of a 4390 x 4890
complex-valued system matrix. On the other hand,
FD-TD remains feasible for the plate at 9 GHz.
Choosing a uniform cell size of 03125cm
(Ao/10.667), the plate is formed by 96 x 32 x 2 cells.
With the radiation boundary again located only 8
cells from the plate surface, the overall lattice size

is 112x 48 x 18, containing 580,608 unknown field
components (real numbers). Figure 14(b) shows
excellent agreement between the FD-TD results
and measurements of the monostatic RCS vs. look
angle performed in the anechoic chamber facility
operated by SRI International. The observed
agreement is within about 1dB and 1° of look
angle. As will be seen next, this level of agreement
is maintained for more complicated targets having
corner reflector propertics.

5.3. T-shaped conducting target, multiple
monostatic looks (14, 20)

We last consider the monostatic RCS pattemn of
a T-shaped target comprised of two flat conducting
plates electrically bonded together. The main plate
has the dimensions 30 cm x 10 cm x0.33 cm, and
the bisecting fin has the dimensions 10cm x
10cmx0.33cm.’ The illumination is a 9.0 GHz
plane wave at 0° elevation angle and TE polariz-
ation relative to the main plate. Thus, the main
plate spans 9.0 wavelengths. Note that look-angle
azimuths between 90° and 180° provide substantial
comner reflector physics, in addition to the edge
diffraction, corner diffraction, and other effects
found for an isolated flat plate.

For this target, the FD-TD model uses a uniform
cell size of 0.3125cm ({A,/10.667), forming the
main plate by 32 x 96 x 1 cells and the bisecting fin
by 32x32x 1 cells. With the radiation boundary
again located only 8 cells from the target's
maximum surface extensions, the overall lattice
sizeis 48 x 112 x 48, containing 1,548,288 unknown
field components (212.6 cubic wavelengths). Start-
ing with zero-field initial conditions, 661 time steps
are used, equivalent to 31 cycles of the incident
wave at 98 GHz.-

Figure 15 compares the FD-TD predicted
monostatic RCS values at 32 key look angles
between 0° and 180° with measurements performed
by SRI International. These look angles are selec-

! The center line of the “bisecting’’ fin is actually positioned
0.37 cm 10 the right of the center line of the main plate. This
is accounted for in the FD-TD model.
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ted to define the major peaks and nulls of the
monostatic RCS pattern. It is seen that the agree-
ment is again excellent: in amplitude, within about
1d8B over a total RCS-pattern dynamic range of
40dB; and in azimuth, within 1° in locating the
peaks and nulls of the RCS pattern. Note especially
the fine agreement for look-angle azimuths greater
than 90°, where there is a pronouncsd corner reflec-
tor effect.

6. FD-TD modeling validations for

electromagsetic wave penetration sad coupling,
two and three dimensiors

6.1. Penetration models for narrow slois and
lapped joints in thick screens

The physics of electromagnetic wave trans-
mission through narrow slots and lapped joints in
shielded enclosures must be accurately understood
to permit good engineering design of equipment
to meet specifications for performance conceming
electromagnetic pulse, lightning, high-power
microwaves, electromagnetic interference and
compatibility, undesired radiated sigals. and
RCS. In many cases, slots and joints can have very
narrow gaps filled by air, oxidation films, or layers
of anodization. Joints can be simple (say, two metal
sheets butted together); more complex (a lapped
or “‘furniture’ joint); or even more complex (a
threaded screw-type connection with random
points of metal-to-metal contact, depending upon
the tightening). Extra complications arise from the
possibility of electromagnetic resonances within
the joint, either in the transverse or longitudinal
(depth) direction.

Clearly, to make any headway with this compli-
cated group of problems using the FD-TD
approach, it is necessary to develop and validate
FD-TD models which can simulate the geometric
features of generic slots and joints. Since a key
geometric feature is likely to be the narrow gap of
the slot or joint relative to one FD-TD space cell,

itis important to understand how subcell gaps can
be efficiently modeled.

Three different types of FD-TD subcell models
have been proposed and examined for modeling
narrow slots and joints:

(1) Equivalent slot loading [29). Here, rules are
setto define an equivalent permittivity and permea-
bility in a slot formed by a single-cell gap to
effectively narrow the gap to the desired degree.

(2) Subgridding [30). Here, the region within
the slot or joint is provided with a sufficiently fine
grid. This grid is properly connected to the coarser
grid outside of the slot.

(3) Faraday's Law contour path model
(31). Here, space cells adjacent to and within the
slot or joint are deformed to conform with the
surface locus (in a manner similar to the conformal
curved surface modei). Slightly modified .time-
stepping expressions for the magnetic field com-
ponents in these cells are derived from the integral
form of Faraday's Law implemented about the
perimeters of the deformed cells.

The accuracy of the Faraday's Law contour path
model for narrow slots and joints is illustrated in
Figs. 16 and 17 by direct comparison of the com-
puted gap electric field distribution against high-
resolution numerical benchmarks. Figure 16
models a 0.1 wavelength thick conducting screen
which extends 0.5 wavelength to cach side of a
straight slot which has a gap of 0.025 wavelength.
Broadside TE illumination is assumed. Three types
of predictive data are compared: (1) the low-resol-
ution (0.1 A,) FD-TD model using the contour
path approach (o treat the slot as a L.ceil gap; 12)
a high-resolution (0.025 A;) FD-TD model treating
the slot as a 1-cell gap; and (3) a very-high-resol-
ution frequency-domain EFIE model, solved via
MOM (having 0.0025 A, sampling in the slot)
which treats the slotted screen as a pure scattering
geometry. From Fig. 16, we see that there is excel-
lent agreement between al! three sets of predictive
data in both magnitude and phase. Of particular
interest is the ability of the low-resolution FD-TD
model, using the contour path approach, to accus-
ately compute the peak electric field in the siot.




568 A. Taflove / Finite-difference time-domain method

|e, se|

-]
PaoNT Of 3CAtEe b 3007 — eacxor wonen
(o)

& MONIL,/220.) .7 400 reseletren)

L €, /N, A)

%"
- FO-TD(A o/ 40 rewmintige)
o’} 8 F0-TO ,/1Q rensieiegs
wave seew

FR0NT P m}-—mv-{ $4CK 07 JCACEX
{n)
Fig. 16. Comparison of FD-TD and {zequency-domain surface
electric field integra! equation results (or the gap electnc field

distribution in 3 slotted conducting screen, straight slot case,
TE illumination: (a7 magnitude; (b) phase (31].

Figure 17 shows the geometry of a U-shaped
lapped joint which was selected for detailed study
of path-length (depth) power transmission reso-
ances. The U shape of the joint permits adjustment
of the overall joint path length without disturbing
the positions of the input and output ports at A
and F. A uniform gap of 0.025 wavelength is
assumed, as is a screen thickness of 0.3 wavelength
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Fig. 17. Geometry of U.shaped lapped joint in 2 conducting
screen, TE illumination {shown to scale) [31).

and width of 3 wavelengths. Figure 18 compares
the gap electric field distribution within the joint
as computed by: (1) a low-resolution (0.09 A,)
contour path FD-TD model treating the gap as
0.28 cell; and (2) a high-resolution (0.025 A,) FD-
TD model treating the gap as 1 cell. The total path
length ABCDEF within the lapped joint is
adjusted to equal 0.45 wavelength, which provides
a sharp power transmission peak to the shadow
side of the screen. From Fig. 18, we see a very
good agreement between the low- and high-resol-
ution FD-TD models, even though this is a numen-
cally stressful resonant penetration case.

An implication of these results is that coarse
(0.1 A,) FD-TD gridding can be effectively used to
model the fine-grained physics of wave penetration
through subcell slots and joints if simple algorithm
modifications are made in accordance with the
contour path approach. This can substantially
reduce computer resource requirements and cod-
ing complexity for FD-TD models of complex
structures, without  sacrificing  appreciable
accuracy in the results.
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Fig. 18. FD-TD computed gap electric field distribution within
the lapped joint at the first transmission resonsnce: (a)
1Egap! Endli (B) £ Eg,/ HotA) (31).
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6.2. Coupling models for wires and wire bundles '

In equipment design for threats represented by
electromagnetic pulse, high-power microwaves,
and electromagnetic interference, understanding
electromagnetic wave coupling to wires and cable
bundles located within shielding enclosures is a
problem that is complementary to that of wave
penetration through apertures of the shield (such
as narrow slots and joints). Similar to the narrow
slot problem, a key dimension of the interacting
structure, in this case the wire or bundle diameter,
may be small relative to one FD-TD space cell.
Thus, it is important to understand how thin, sub-
cell, wires and bundles can be efficiently modeled
if FD-TD is to have much application to coupling
problems.

Two different types of FD-TD subcell models
have been proposed and examined for modeling
thin wires:

(1) Equivalent inductance [32). Here, an
equivalent inductance is defined for a wire within
a space cell, permitting s lumped-circuit model of
the wire to be set up and computed in parallel with
the field solution.

(2) Faraday's Law conitour path model (21).
Here, space cclls adjacent to the wire are deformed
to conform with the surface locus (in a manner
similar to the conformal curved surface model).
1/r singularities of the azimuthal magnetic field
and radial electric field are assumed to exist within
the deformed cells. Slightly modified time.stepping
expressions for the azimuthal magnetic field com-
ponents in these cells are derived (rom the integral
form of Faraday's Law implemented around the
perimeter of the deformed cells.

The accuracy of the Faraday's Law contour path
model for thin wires in free space is illustrated in
Figs. 19(a) and 19(b). Figure 19(a) graphs the
scattered azimuthal magnetic field at a fixed dist-
ance of 1/20 wavelength from the center of an
infinitely long wire having a radius ranging
between 1/30,000 and 1/30 wavelength. TM illumi-
nation is assumed. We see that there is excellent
agreement between the exact series solution and
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Fig. 19. Vaiidation studies for the Faraday's Law contour path
FD.TD modael (or thin wires in free space: (s) companrison of
FD-TD and exact solutions for the scattered azimuthal mag.
netic Aeld a1 2 Axed distance of 1/20 wavelength from the center
of an infinitely long wire (a3 & function of wire radius); (b)
companson of FD.TD and MOM results for the scattered
azimuthal megnetic fisld distribution along 8 2.0 wavelength
(sntiresonant) wire of radivs 1/300 wavelength (21).

the low-resolution (0.1 A;) FD-TD contour path
model over the entire 3-decade range of wire
radius. Figure 19(b) graphs the scattered azimuthal
magnetic field distribution along a 2.0 wavelength
(antiresonant) wire of radius 1/300 wavelength.
Broadside TM illumination is assumed, and the
field is observed at a fixed distance of 1/20
wavelength from the wire center. We see that there
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is excellent agreement between a frequency-
domain EFIE (MOM) solution sampling the wire
current at 1/60 wavelength increments, and the
low-resolution (0.1 A,) FD-TD contour path
model.

The FD-TD contour path model can be extended
to treat thin wire bundles, as well as single wires.
Figure 20 shows the code-to-code validation results
for the induced currents on a bundle comprised
of 4 wires, where 3 are of equal length. Here, a
wire of length 60 cm (2.0 wavelengths) is assumed
to be at the center of the bundle, and three parallel
wires of length 30 cm (1.0 wavelength) are assumed
to be iocated at 120° angular separations on a
concentric circle of radius Smm (1/60
wavelength). The radii of all wires in the bundle
are cqual and set to 1 mm (1/300 wavelength). The
assumed excitation is in free space, provided by 2
1 GHz broadside TM piane wave. Following the
technique of [21), the bundle is replaced by a single
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wire having varying equivalent radius correspond-
ing to the three sections along the bundle axis. The
physics of the single wire of varying equivaient
radius is incorporated in a low-resolution (0.1 A,)
FD-TD contour path model, as discussed above.
The FD-TD model is then run to obtain the tangen-
tial £ and H fields at a virtual surface conveniently
located at the cell boundary containing the
equivalent wire (shown as a dashed line in Fig.
20). These fields are then utilized as excitation to
obtain the currents induced on the individual wires
of the original bundle. This last step is performed
by setting up an EFIE and solving via MOM.
Figure 20 shows an excellent correspondence
between the results of the hybrid FD-TD/MOM
procedure described above and the usual direct
EFIE (MOM) solution for the induced current
distribution on each wire of the bundle.

The hybrid FD-TD/MOM procedure for model-
ing thin wire bundles is most us2fu! when the
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bundie is located within a shielding enclosure.
Figures 21 and 22 show the geometry and test
results for such a model involving the variation of
induced load current with illumination frequency
for a single wire and a wire-pair located at the
center of a cylindrical metal enclosure. The
enclosure is 1.0 m high, 0.2 m in diameter, and
referenced 1o a large metal ground plane. Approxi-
mate plane wave illumination is provided by an
electrically-large conical monopole referenced to
the same ground plane. Wave penetration into the
interior of the enclosure is through a circumferen-
tial slot aperture (12.5 cm arc length, 1.25 cm gap)
at the ground plane. For the cases studied, an
internal shorting plug is located 40 ¢cm above the
ground plane. For the single-wire test, a wire of
length 30cm and radius 0.495mm is centered
within the interior and connected to the ground
plane with a lumped 50-ohm load. For the wire-
pair test, parallel wires of these dimensions are
located 1 cm apart, with one wire shorted to the
ground plane and the other connected to the
ground plane with a lumped 50-ohm load. All
results are normalized to a 1 V/m incident wave
electn: feld.

From Fig. 22, we see that there is a gocd corre-
spondence between the measured and numerically

modeled wire load current for both test cases. The
two-wire test proved to be especially challenging
since the observed Q factor of the coupling
response (center frequency divided by the half-
power bandwidth) is quite high, about 75. Indeed,
it is found that the FD-TD code has to be stepped
through as many as 80 cycles to approximately
reach the sinusoidal steady state for illumination
frequencies near the resonant peak [21]. However,
substantially fewer cycles of time-stepping are
needed away from the resonance, as indicated in
the figure.

7. Use of FD-TD for modeling very complex
three-dimensional structures

Two charactenistics of FD-TD cause it to be very
promising for numerical modeling of electromag-
netic wave interactions with very complex objects:
(1) Dielectric and permeable media can be
specified independently for each electric and mag-
netic field vector component in the three-
dimensional volume being modeled. Since there
may be tens of millions of such vector components
in large FD-TD models, inhomogeneous media of
enormous complexity can be specified in principle.
(2) The required computer resources for this type
of detailed volumetric modeling are dimensionally
low, only of order N, where N is the number of
space cells in the FD-TD lattice.

The emergence of supercomputers has recently
permitted FD-TD to be seriously applied to a
number of very complex electromagnetic wave
interaction problems. Two of these will now be
briefly reviewed.

7.1. UHF wave peneiration into a missile seeker
section [6, 33]

Here, FD-TD is ap; iied to model the penetra-
tion of an axially incident 300 MHz plane wave
into a metal-coated missile guidance section. The
FD-TD model, shown in Fig. 23, contains the
(1) magnesium fluoride

following elements:
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Fig- 22. Comparison of hybrid FD-TD/MOM modeling predictions with experimental data for induced load current: (a) single .
wire in shielding enclosure; (b) wire pair in shie!ding caclosure {21).
infrared dome; (2) circular nose aperture; (3) cir- backplane, and (9) longitudinal metal suppon
cumferential sleeve-fitting aperture 23cm aft rods. The fiberglass structure of the nose cone and
(loaded with fiberglass); (4) head-coil assemoly, its metalization are approximated in a stepged- o
(5) cooled detector unit with enclosing phenolic surface manner, as is the infrared dome.
gp ,
ring; (6) pre-amp can; (7) wire bundle connecting For this structure, the FD-TD model uses a
the detector unit to the pre-amp can; (8) wire uniform cell size of {cm (A,/300), with an over-

bundle connecting the pre-amp can to the metal all lattice size of 24x100x48 cells containing
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690,000 unknown field components. (A single sym-
metry plane is used, giving an effective lattice size
of 48x100x48.) The mode! is run for 1800 time
steps, equivalent to 3.0 cycles of the incident wave
at 300 MHaz.

Figure 24 plots contour maps of the FD-TD
computed field vector components at the symmetry
plane of the model. An important observation is
that the simulated wire bundles connecting the
cooled detector unit, pre-amp can, and metal back-

plane are paralieled by high-level magnetic field
contours (Fig. 24(b)). This is indicative of substan.
tial, uniform current flow along each bundie. Such
current flow would generate locally a magnetic
field looping around the wire bundle which, when
*“cut” by the symmetry plane, shows up as parallel
field contours spaced equally on each side of the
bundle. Using a simple Ampere’s Law argument,
the common-mode bundle currents can be calcu-
lated, thus obtaining a key transfer function
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between free-field incident UHF plane wave power
density and coupled wire currents [33). As stated
eurlier, this information is usefui for studies of
vulnerability of electronic systems to upset due to
voth natural and man-made electromagnetic
phenomena.

Although this missile seeker model was com-
posed to demonstrate the capability of FN-'D to
map fields penetrating into a complax structure
having muitiple apertures and realistic interral
engineering details, it should be understood that
the full bistatic radar cross section pattern of the
structure is available as a’byproduct with virtually
no additional efort. Further, w.th the }cm space
resolution used, the FD-TD radar cross section
model would be useful up to 9 GHz.

7.2. Whole-body human dosimetry at VhR! and
UHF frequencies (34, 35]

Here, FD-TD is applied 1o model the penetra-
tion of plane waves at YH and UHF frequencies
into the entire human body. Directly exgloiting
the ability of FD-TD to model media
inhomogeneities down to the space-cell level,
highly realistic three-dimcnsional FD-TD tissue
models of the complete body have been construc-
ted. Specific electrical parameters are assigned to
each of the electric field vector components at the
16,000 to 40,000 space cells comprising the body
model. Assignments are based upon detailed cross-
section tissue maps of the body (as obtained via
cadaver studies available in the medical lizerature),
and cataloged measurements of tissue dielectric
properties. Uniform FD-TD space resolutions as
fine as 1.3 cm throughout the entire human body
have proven feasible with the Cray-2.

Figure 25, taken from {35], shows the FD-TD
computed contour maps of the specific absorption
rate (SAR) distribution alcng honzontal cuts
through the head and liver of the three-
dimensional inhomogeneous man model. In Fig.
25(a), the incident wave has a power density of
1 mW/cm® at 350 Mhz, while in Fig. 25(b), the
incident wave has the same power density but is

at 100 MHz. These c>ntour maps illustrate the high
level of detail of local features of the SAR distribu-
tion that is prssiole via FD- TD modeling for highly
realistic ti,sue models.

8. FD-TD microstrip and microwave circuit models

Recently, FD-TD modeling has been extended
to provide detailed characterizations of micro-
strips, resonators, finlines, a. ~ two-dimensivnal
microwave circuits. In {36], FC-TD is used to
calculate the dispersive characteristics of a typical
microstrip on a gallium arsenide substrate. A
Gaussian pulse excitation is used, and the effective
dielectric constant and characteristic impedance
vs. frequency is efficiently obtained over a broad
frequency range via Fourier ransform of the time-
domain field response.

In [37], FD-TD is first used to obtain resonant
frequencies of several three-dimensional cavities
loaded by dielectric blocks. Next, the resonant
frequency of a finline cavity is computed. Last, the
resonar’ frequencies o a microstrip cavity on
anisotropic substrate are obtained, and the disper-
sion characteristics of the microstrip used in the
cavity are calculated. FD-TD modeling results are
compared primarily to those obtained using the
transmission line matrix (TLM) approach, and the
two methods are found to give practically the same
results. (See also the paper by Jrhrs in tnis issue
{pp. 597-610}.)

In [38], a modified version of FD-TD is presen-
ted which provides ceutral-difference time-step-
ping expression, for distributions of voltage and
surface current density along arbitrary-shaped
two-dimensional microwave circuits.  This

approach is quite different from that of (6, 37),
which utilize the original volumetric field sampling
concept for FD-TD. As a result, the r.ethod of
[33) requires fewer unknowns to be solved, and
avoids the need for a radiation boundary condi-
tion. However, an auxiliary condition is required
to describe the loading effects of the friiiging fields
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at e edges of the microstrip conducting paths.
Figure 26, taken from [38], shows the FD-TD
computed S-parameter, |S;), as a function of
frequency for a two-poct microstrip ring circuit.
The ring circuit, gridded as shown in the figure,
has an inner radius of 4 mm, outer radius of 7 mm,
substrate relative permittivity of 10 and relative

permeability of 0.93 (simulating duroid), and is
connected to two 50-ohm lines making a 90° angle.

The broadband response of the circuit is obtained

§717

using a single FD-TD run for an appropriate pulse
excitation, followed by Fourier transformation of
the desired response time-domain waveform. From
Fig. 26, we see good agreement of the predicted
and measured circuit response over the 2-12 GHz
frequency band and a dynamic range of about
30 dB. Reference [38] concludes that the applica-
tion of its FD-TD approach to arbitrarily-shaped
microstnip circuits is encouraging, but more work
is needed to determine the modeling limitations,
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Fig. 26. Comparison of FD-TD modeling predictions with measurements of | S,,| for 3 two-port microstrip ring circuil: (a) geometry
and gridding of microstnp circuit; (b) comparative results over 2-12 GHz [38].
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especially at higher frequencies where media dis-

persion can become important.

9. FD-TD inverse scattering recoastructions in
one and two dimensions

Initial work has demonstrated the possibility of
accurately reconstructing one-dimensional profiles
of permittivity and conductivity (39], and the shape
and dielectric compositions of two-dimensional
targets [40, 41] from minimal scattered field pulse
response data. The general approach involves set-
ting up a numerical feedback loop which uses a
one- or two-dimensional FD.TD code as a for-
ward-scattering element, and a specially construc-
ted non-linear optimization code as the feedback
element. FD-TD generates a test pulse response
for a trial layerng or target shape/composition.
The test pulse is compared to the measured pulse,
and an error signal is developed. Working on this
error signal, the nonlinear optimization element
perturbs the trial layering or target shape/ composi-
tion in a manner to drive down the error. Upon
repeated iterations, the proposed layering or target
ideally converges to the actual one, a strategy
similar to that of (42).

The advantage of working in the time domain
is that a layered medium or target shape can be
reconstructed sequentially in time as the wavefront
of the incident pulse sweeps through, taking advan-
tage of causality. This reduces the complexity of
reconstruction since only a portion of the layering
ortarget shape is being generated at each iteration.
Advar.ced strategies for reconstruction in the pres-
ence of additive noise may involve the use of
prediction/correction, where the trial layer or
target shape is considered to be a predictor of the
actual case, which is subsequently corrected by
notimization of the entire layered medium ortarget
shape wusing ihe complete scattered pulse
waveform.

Figure 27 shows the apnlication of the basic
FD-TD feedback strategy to a one-dimensional
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Fig. 27. Application of the FD-TD ~feedback strategy to recon-
struct a8 one-dimensional “sawtooth’” vanation of electncal
permittivity and conductivity in the absence of noise [39].

layered medium in the absence of noise. Both the
electrical permittivity and conductivity of the
medium vary in a “'sawtooth” manner with depth.
The curves show simulated measured daca for the
reflected pulse for three cases defined by the peak
values of the conductivity (0.001S/m, 0.01 S/m,
and 0.1 S/ m) and the corresponding spatially coin-
cident peak values of relative permittivity (3, 2,
and 4) of the medium. In each case, the incident
pulse is assumed to be half-sinusoid spanning
50 cm between zero crossings. Noting that the dark
dots superimposed on the “‘sawtooth™ represent
the reconstructed values of permittivity and con-
ductivity, we see that the basic FD-TD feedback
strategy is quite successful in the absence of noise
[39]).

Figure 28 shows the application of the FD-TD
feedback strategy to reconstruct a two-dimensional
lossy dielectric target. The targetisa 30 cm x 30 ¢cm
square cylinder having a uniform conductivity of
0.01S/m, and a tent-like refative permittivity
profile which starts at 2.0 at the front and left sides
and increases linearly to a peak value of 4.0 at the
back comer on the right side. These profiles are
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Fig. 28. Application of the FD-TD/feedback strategy to reconstruct 8 two-dimensional lossy dielectric target in the presence of
noise {41).

illustrated in a8 perspective manner at the top of
Fig. 28. The target is assumed to be illuminated
by a TM polarized plane wave that is directed
toward the front of the target (as visualized at the
top of Fig. 28). The incident waveform is a 3-cycle
sinusoidal tone burst having a 60 MHz carrier
frequency. For the reconstruction, the only data
utilized is the time.domain waveform of the scat.
tered electric field as observed at two points. These
points are located 1 m from the front of the target,
and are positioned 15 cm to either side of the target
center line. To simulate measured data, the FO-TD
computed scattered field waveforms are contami-
nated with additive Gaussian noise. In all of the
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reconstructions, the target shape and location is
assumed to be known.

From Fig. 28, we see that for a signal/noise ratio
of 40 dB, the average error in the reconstructed
permittivity and conductivity profiles is- 1.5% and
2.3% respectively. If the signal/noise ratio is
reduced to 20dB, the average errors increase to
6.9% and 10.4%, respectively [41). Research is
ongeing to determine means of improving the noise
performance, especially using predictor/corrector
techniques briefly discussed earlier. Given the rela.-
tively small amount of scattered field data utilized,
the FD-TD feedback strategy appears promising
for future development.
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10. Very large-scale computer software

The FD-TD method is naturally suited for large-
scale processing by state-of-the-art vector super-
computers and cencurrent processors. This is
because essentially all of the arithmetic operations
involved in a typical FD-TD run can be vectorized
or cast into a highly concurrent format. Further,
the O( N) demand for computer memory and clock
cycles (where N is the number of lattice space
cells) is dimensionally low, and permits three-
dimensional FD-TD models of structures spanning
50-100 A, to be anticipated by the early 1990s.

Table 1
Computation times

10-wavelength model
Machine present FD-TD code®

VAX 11/780 (no floating-point 40.0h
accelerator)

Cray-2 (single processor, using 12.0min
the VAX Fontran)

Cray-2 (single processor, some 3.0 min
code optimization)

Cray-2 (four processors, some | min(est.)
code optimization)

True 10 GRop machine 2 sec (est.)

* 1.55 - 10* unknowan Beld vector components, 661 time steps
(T-shaped target). The complete bistatic RCS pattern is
obtained for a single illumination angle at a single frequency.
Times are increased by 50%-100% if an impulsive illumi.
nation/ Fourier transform is used 1o obtain the’bistatic RCS
pattern at a multiplicity of frequencies within the spectrum of
the impulsive illumination.

Let us now consider computation times of pres-
ent FD-TD codes. Table 1 lists computation times
(derived either from benchmark runs or based on
analysts’ estimates) for modeling one illumination
angle of a 10 A, three-dimensional structure using
the present FD-TD code. Note that the fourth
computing system listed in the table is a
hypothetical next-generation machine operating at
an average rate of 10 Gflops. This capability is
generally expected to be available in the early
1990s.

From Table 1, it is fairly clear that steadily
advancing supercomputer technology will permit

routine engineering usage of FD-TD for modeling
electromagnetic wave interactions with electri-
cally-large structures by 199S.

An interesting prospect that has recently arisen
is the reduction of the O( N) computational burden
of FD-TD 10 O(N'"?}. This possibility is a con-
sequence of the appearance of the Connection
Machine (CM), which has tens of thousands of
simple processors and associated memories
arranged in a highly efficient manner for processor-
to-processor communication. With the CM, a
single processor could be assigned to store and
time-step a single row of vector field components
in a three-dimensional FD-TD space lattice. For
example, 1.5 - 10* processors would be sufficient
to store the 6 Cartesian components of E and H
for each of the 500 x 500 rows of a cubic lattice
spanning 50 A, (assuming 10 cells/A, resolution).
FD-TD time-stepping would be performed via row
operations mapped oanto the individual CM pro-
cessors. These row operations would be performed
concurrently. Thus, for a fixed number of time
steps, the total nunning time would be proportional
to the time needed to perform a single row
operation, which in tum would be proportional to
the number of field vector components in the row,
or O(N'?),

For the 50 A, cubic lattice noted above, this
would imply a dimensional reduction of the com-
putational burden from O(500°) to 0O(500), a
tremendous benefit. As a result, it is conceivable
that a suitably scaled CM could modei one illumi-
nation angle of a 50 A, three-dimensional structure
in only a few seconds, achieving effective floating-
point rates in the order of 100 Gflops. For this
reason, FD-TD sofiware development for the CM
is a promising area of research for developing
ultralarge numerical models of electromagnetic
wave interactions with complex structures.

11. Conclusion

This paper has reviewed the basic formulation
of the FD-TD numerical modeling approach for
Maxwell's equations. A number of two- and three-
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dimensional examples of FD-TD modeling of elec-
tromagnetic wave interactions with structures were
provided to indicate the accuracy and breadth of
FD-TD applications. The objects modeled range
in nature from simple geometric shapes to
extremely complex aerospace and biological sys-
tems. In all cases studied to date where rigorous
analytical, code-to-code, or experimental valida-
tions were possible, FD-TD predictive data for
penetrating and scattered near fields as well as
radar cross section were in excellent agreement
with benchmark data. It was also shown that
ooportunities are arising in applying FD-TD to
rapidly time-varying systems, microwave circuits,
and inverse scattering. With continuing advances
in FD-TD modeling theory, as well as continuing
advances in vector and concurrent supercomputer
technology, there is a strong possibility that FD-TD
numerical modeling will occupy an important
place in high-frequency engineering electromag-
netics as we move into the 1990s.

Acknowledgment

The author wishes to acknowledge the research
contributions of his colleagues, Prof. K.R.
Umash' nkar of the University of Illinois at
Chicago and Prof. G.A. Kriegsmann of North-
western University. Contributions of graduate
students at these two institutions, especially Mr.
Ben Beker, Mr. Jeffrey Blaschak, Mr. Fady Har-.
foush, Mr. Thomas Jurgens, Mr. Thomas Moore,
and Mr. Mark Strickel are al: » gratefully acknowl-
edged. The author also wishc . to acknowledge the
support of his sponsors, past and present, includ-
ing the U.S. Air Force Rome Air Development
Center (Contracts F30602-77-C-0163, F30602-79-
C-0039, F30602-80-C-0302, and F19628-82-C-
0140); Lawrence Livermore National Laboratory
(Contract 6599805); NASA Lewis Research Center
(Grant NAG 3-635); National Science Foundation
(Grants ECS-8515777 and ASC-8811273); and
Office of Naval Research Contract N00014.88-K-
0475.

References

(1] K.S. Yee, “Numerical solution of initial boundary value
problems involving Maxwell’s equations in isowropic
media”, [EEE Trans. Antennas Propagar. 14, 302-307
(1966).

(2] A. Taflove and M.E. Brodwin, “Numencal solution of
steady-state electromagnetic scattering problems using the
time-dependent Maxwell's equations”™, [EEE Trans.
Microwove Theory Tech. 23, 623-630 (1975).

(3) G.A. Kriegsmann, “Exploiting the limiting amplitude
principle to numerically solve scattering problems™, Wave
Motion 4, 371-380 (1982).

(4] A. Taflove and M.E. Brodwin, "Computation of the elec-
tromagnetic fields and induced temperatures within a
model of the microwave-irradiated human eye”, EEE
Trans. Microwave Theory Tech. 23, 888-896 (1975).

(5] A. Taflove, “Application of the finite-difference 1tme.
domain method to sinusoidal steady state electromagnetic
penetration problems’, IEEE Trans Eleciromagn, Compar.
22, 191-202 (1980).

[6) A. Taflove and K.R. Umashankar, “A hybrid moment

method/finite-difference time-domain approach to elec-

tromagnetic coupling and aperture penetration into com.

plex geometnes™, [EEE Trans. Antennas Propagar. 30,

617-627 (1982).

R. Holland, “Threde: a (ree-field EMP coupling and scat.

tering code”, IEEE Trans. Nuclear Sa. 24, 2416-2321

(1977).

(8) K.S. Kunz and K.M. Lee, A three-dimensional finite-
difterence solution of the external response of an aircraft
to a complex transient EM environment I: The method
and its implementation”, JEEE Trans. Eleciromagn. Com-
pat. 20, 328-333 (1978).

{9) D.E. Meriwether, R. Fisher and F.W. Smith, “On
implementing a numeric Huygen's source scheme n 2
finite-diflerence program to illuminate scattering bodies”,
IEEE Trans. Nuclear Sci. 27, 1819-1833 (1980).

(10] A. Taflove and K.R. Umashankar, "Advanced numerical
modeling of microwave penetration and coupling for com-
plex structures”’, Final Repont No. UCRL-15960, Contract
6599805, Lawrence Livermore Nat. Lab. (1987).

(1) G. Mur, “Absorbing boundary conditions for the finite.
diflerence approximstion of the time-domain electromag-
netic field equations™, /EEE Trans, Lieciromagn. Compat.
23,377-382 (1981).

(12] K.R. Umashankar and A. Taflove, A novel method to
analyze electromagnetic scattering of complex objects”,
IEEE Trans. Eleciromagn. Compal. 24, 397-305 (1982).

(13) A. Taflove and KR. Umashankar. “Radar cross section
of general three-dimensional scatterers”, /EEE Trans.

Electromagn. Compas. 25, 433-440 (1983).

(14] A. Taflove, K.R. Umashankar and T.G. Jurgens, ** Valida-
tion of FD-TD modeling of the radar cross section of
three.dimensional structures spanning up (o nine
wavelengths”, [EEE Trans. Antennas Propagat. 33, 662-
666 (1985).

(7

—




582 A. Taflove / Finite-difference time-domain method

(15] B. Engquist and A. Majda, "Absorbing boundary condi-
tions for the numerical simulation of waves™*, Math. Com.
put. 31, 629-651 (19717).

(16] L.N. Trefethen snd L. Halpern, **Well-posedness of one-
way wave equations and absorbing boundary conditions’,
Rept. 83-30, Inst. Comput. Appl. Sci. and Eng. (ICASE),
NASA Langley Res. Center, Hampton, VA (1985).

(17) J.G. Blaschak and G.A. Kriegsmann, "A comparative
study of absorhbing borndary cunditions”, J. Compur.
Physics 77, 109--139 1.988).

(18) D.T. Borup, D.M. Sullivan and O.P. Gandhi, "Com-
panison of the FFT conjugste gradient method and the
finite-difterence time-domain method for the 2-D absorp-
tion problem™, [EEE Trans. Microwave Theory Tech. 35,
383.395 (1987).

{19} 8. Beker, K.R. Umashankar and A. Taflove, “‘Numerical
anaiysis and validation of the combined field surface
integral equations for electromagnetic scattering by
arbitrary shaped two-dimensional anisotropic objects™,
IEEE. Trans. Antennas Propagat., submitteq.

[20]) A. Taflove and K.R. Umashankar, ' Analytical models for
electroinagnetic scattering™’, Final Report RADC-TR-85-
87 on contract F19628-82-C-0140, Electromagn. Sci. Div.,
Rome Air Dev. Center, Hanscom AFB, MA (1985).

[21]) K.R. Umashankar, A. Taflove and B. Beker, “Calculation
and expenimental validation of induced currents on cou-
pled wires in an arbitrary shap<d cuvity”, IEEE Trans.
Antennas Propagat. 35, 1248-1257 (1987).

(22]) T.G. Jurgens, A. Taflove, K.R. Umashankar and T.G.
Moore, "FD.TD conformal modeling of smoothly curved
targets™”, IEEE Trans. Aniennas Propagat., submitted.

(23) M. Fusco, "FD-TD algonithm in curvilinear coordinates”,
IEEE Trans. Antennas Propagat., submitted.

(24} V. Shankar and W. Hall, “A time-domain difterential
solver for electromagnetic scattering problems™, Proc.
IEEE 77 (1989).

(25) J.G. Blaschak, G.A. Kriegsmann and A. Taflove, " A study
of wave interactions with flanged waveguides and cavities
using the on-surface radiation condition method”, Wave
Motion 11 (1989).

[26] F.Harfoush, A Taflove and G.A. Kniegsmann, “A numen.
cal technique for analyzing electromagnetic wave scatter-
ing from moving surfaces in one and two dimensions”,
IEEE Trans. Aniennas Propagal. 37 (1989).

(27) D. De Zutter, "Reflections from linesrly vibratinig objects:
plane mirror at oblique incidence”, JEEE Trans. Aniennas
Propagat. 30, 898-903 (1982).

{28) D.R. Wiltonand S. Govind, “Incorporation of edge condi-
tions in moment method solutions”, JEEE Trans. Anten
nas Propagai. 25, 845-850 (1977).

[29] ). Gilbert and R. Holland, "'Implementation of the thin-
slot formalism in the Anite-diference EMP code
THREDII", JEEE Trans. Nuclear Sci 28, 4269-4274
(1981).

Ab64

(30) K.S. Yee, "A numerical method of solving Maxwell's
equations with a coanse grid bordering a fine gnd",
SGEMP Note 9, Document D-DV-86-0008, D Division,
Lawrence Livermore Nat. Lab. (1986).

{31) A. Taflove, K.R. Umashankar, B. Beker, F. Harfoush and
K.S. Yee, “Detailed FO-TD analysis of clectromagnetic
fields penetrating narrow slots and lapped joints in thick
conducting screens”, JEEE Trans. Antennas Propagar. 36,
247-257 (1988).

(32) R. Holland and L. Simpson, “Finite-diflerence analysis
of EMP coupling to thin struts and wires”, JEEE Trans.
Eleciromagn. Compat. 2, 88-97 {1981).

[33) A. Taflove and K.R. Umashankar, *Evaluation of time.
domain electromagnetic coupling techniques. Vol. I
Theory and numenical results”, Final Report RADC-TR-
80-251 on contract F30602-79-C-0039, Rome Air. Dev.
Centet, Griffiss AFB, NY (1980).

(34} D.M. Sullivan, D.T. Borup and O.P. Gandhi, “Use of the
finite-diflerence time-domain method in calculating EM
absorprion in human tissues™”, [EEE Trans. Biomed Eng.
34, 148157 (1987).

{35} D.M. Sullivan, O.P. Gandhi and A. Taflove, **Use of the
finite-diflerence time-domain method in calculating EM
absorption in man models”, /EEE Trans. Biomed. Eng.
35, 179-186 (1988).

(36] X. Zhang, J. Fang, K.K. Mei and Y. Liu, “Calculations
of the dispenive characteristics of microstrips by the time.
domain finite-difference method ™', /EEE Trans. Microwave
Theory Tech 36, 263-267 (1988).

(37] D.H. Choi and W.J. Hoefer, "The finite-difference time.
domain method and its applicstion to eigenvalue prob.
lems”, IEEE Trans. Microwave Theory Tech. 34, 1 464-1470
(1986).

(38) W.K. Gwarek, "Analysis of ashiararily-shaped (wo-
dimensional microwave circuits by the finitc-diference
time-domain method”, /[EEE Trans. Microwave Theory
Tach. 36, 7)8-744 (1988).

(39) K.R. Umashanksr, $.K. Chaudhuri and A. Taflove,

“Finite-difference time-domain formulation of an inverse

scattering scheme for remote sensing of inhomogeneous

lossy layered media”, JEEE Trans. Antennas Propagat.,
submitted.

M.A. Strickel, A. Taflove and K.R. Umashankar. “Accur-

ate reconstruction of two-dimensiona: .onducting and

homogeneous dielectric target shapes (rom a single-point

TM scattered field pulse response”’, IEEE Trans. Antennas

Propagar. submitted.

{41) M.A. Sirickel and A. Taflove, “Reconstruction of one-
snd two-dimensionsl inhomogeneous diclectric targets
using the FD-TD/(eedback method™, IEEE Trans. Anien.
nas Propagat., submitted.

{42) C.L. Bennett and G.F. Ross, “Time-domain electromag-
netics and ity applications™”, Proc. /EEE 66, 199-318
(1978).

{40

—




IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION. VOL. }7. NO. |, JANUARY (989 5

A Numerical Technique for Analyzing
Electromagnetic Wave Scattering
from Moving Surfaces in One
and Two Dimensions

FADY HARFOUSH, stupent Memser, 1EEE, ALLEN TAFLOVE, SENIOR MEMBER, (EEE, AND
GREGORY A. KRIEGSMANN

Abstrect—The dlectromaguetic wave scallering properties of s mov-
ing, perfectly conducting mirror are snsiyzed using » sew sumerical tech-
oique based 0n the Minitgdifference (ime domain (FD-TD) method. This
semericsl techaique is usique in that it does nol require 8 system trass-
formation whers the object is st rest but gives a solution (0 the problem di-
rectly in the laboratory frame. Firsi, two casosical one-dimessions’ cases
are considered, the uniformly moviag sad the saiformly vibvsting mirror.
Numerical resuits for (he scatiered fleld spectrym ste compsared (0 avall-
able ssalytical results, and aa exceilest agreement is demonsirsisd. The
sbility of the FD-TD model to obtain the physics of the dowdie-Doppler
aflect (for the ugiform transiation case), sod FM-Hiks reflectad spectrum
(for the waiform vibration case) is bighlighted. Second, the method bs
exsnéed (0 two-dimensions where a plane weve at oblique incidence o
88 infiaite vibrating misror is comsidered. A good agreemest with pud-
fished resuits is demonsirated for this case. This sew spproach bused o8
FD-TD provides a poteatially strong 100! to numerically mode! 8 variery
of problems iavolvisg movisg sad vibratiag scalterers where alisroative
anslytical or sumerical modeling mesas ars uot svailahle.

1. InTRODUCTION

HE ANALYTICAL THEORY of electromsgnetic wave
scattering by moving bodies has been developed prin-
cipally for canonical one-, two-, and three-dimensional struc-
tures [ 1), (2]. (3}. Canonical problems considered include pla-
nar conducting and dielectric interfaces in uniform translation
or vibration [4], uniformly moving random rough surfaces
{5). uniformly moving or vibrating cylindrical and spherical
shapes (6], (7], [8], and simple rotating shapes (9]. Motivation
for pursuing such analyses has been provided in part by re-
search in the generation of millimeter and submillimeter waves
using the interaction of microwaves with relativistically mov-
ing ionization (plasma) fronts or electron beam fronus (10],
{11).
Existing analytical theory in this area models the physics
of a reflecting surface in uniform translation or vibration by
employing system transformations where the surface is at rest.
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Difficulties arise when attempting such analyses for general
two- or three-dimensional scatteiers, since closed-form solu-
tions cannot be obtained when the scatterer shape, compo-
sition, translation, and surface vibration are arbitrary. Yet,
such general problems arise as more detailed information is
required concerning microwave interactions with moving or
oscillating charged particle beams of finite cross section.

This paper introduces 3 purely numerical approach for
modeling scattering by relativistically moving perfectly con-
ducting bodies based upon the finite-difference time-domain
(FD-TD) method (12]-[24). This approach uses no system
transformation and gives the solution direcdy in the labo-
ratory frame. It exploits the dewsiled time-domain modeling
characterigtics of FD-TD, and has the polemial to permit
computation of sccurate solutions for moving/vibrating rigid
body problems of substantially more complexity than exist-
ing analytical approaches. The work presented here includes
derivation of the necessary modifications of FD-TD for the
reiativistic body case, and validations for uniform translstion
and vibration in one and two dimensions against existing an-
alytical theory. The sbility of the FD-TD model to obiain the
physics of the double-Doppler effect (for uniform translation).
and FM-like reflected spectrum (for vibration), will be high-
lighted. A subsequent peper will address the catension of the
new approach to treat convex, conducting, two-dimensional
bodies subject to uniform relativistic translation and/or vibra-
tion.

The present paper is organized as follows. Section il briefly
summarizes the background of the basic FD-TD method, and
then describes the basis and FD-TD numerical implementa-
tion of the required relativistic electromagnetic ficld boundary
conditions. Section LI discusses validation studies for the uni-
formly moving mirror in one dimension. Section IV discusses
validation studies for the uniformly vibrating mirror also in
onc dimension. Section V presents a two-dimensional case
study of the oblique incidence with cornparative results. Last,
Section V1 provides the summary and conclusions.

{I. Descrirmion OF THE NUMeRI( AL METHOD
A. Background of the Basic FD-TD Method

In the mid-1960's, Yee introduced a computationally ef-
ficient means of directly solving Maxwell's time-dependent
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curl equations using finite differences [12]). now designated
as the finite-difference time domain method. With this ap-
proach, the continuous electromagnetic field in a finite vol-
ume of space is sampled at discrete points in a space lattice
and at discrete points in time. Wave propagation, scanering,
and penetration phenomena are modeled in a self-consistent
manner by marching in time, that is. repeatedly implementing
the finite-difference analog of the curl equations at cach lat-
tice point. This results in a simulation of the continuous actual
waves and sampled-data numerical analogs propagating in a
data space stored in a computer. Space and time sampling in-
crements are selected to avoid aliasing of the continuous field
distribution, and to guarantee stability of the time-marching
algorithm [13]). Time marching is completed when the desired
steady-state field behavior is observed.

The basic FD-TD method permits the modcling of electro-
magnetic wave interactions with a level of detail comparable
to that of the widely used method of moments [25]. Further,
its explicit nature leads to overall computer storage and run-
ning time requirements that are linearly proportional to NV, the
number of field unknowns in the finite volume of space being
modeled. These two attributes permit FD-TD to provide de-
tailed numerical models of wave interactions with structures
having volumetric complexity, such as biological tissues {14)
and loaded cavities [15], {16]).

For the present work, it has been necessary 10 modify the
basic FD-TD formulation to model moving, perfectly con-
ducting. scatterers. The most simple, "*brute-force™ approach
would be to simply let the scarterer occupy slightly different
positions in the space lattice at each time step. This corre-
sponds 10 the quasi-stcady-stale method {4], which has been
adopted in ceruin analytical solution approaches. Although
this method gives an approximate answer when applied to
FD-TD. as will be seen in Section LI, it does not completely
provide the proper physics. An appropriate relativistic elec-
tromagnetic field boundary condition, discussed next, must
also be incorporated into the FD-TD code at the surface of
the scatterer. For unately, this condition is easy to derive in a
form suitable for FD-TD implementation.

B. The Relativistic Boundary Conditions in the FD-TD
Code

There are a ni'mber of ways 1o solve for the scattered field
from 2 moving object. In general, the desired analytical so-
lution for the scartered field can be oblained by a Lorentz
transformation of the incident field to the moving system. and
solution for the scattered field in the frame of reference of
the moving system (26]. In this reference frame, the scatterer
surface 1s stationary and the electromagnetic boundary con-
ditions are well defined. The inverse Lorentz transformation
then provides thz final answer in the laboratory frame. How-
ever, a direct solution that 1s more straightforward (and shorter
in some cases) is possible in the laboratory frame without a
Lu.entz transformation if one uses what is defined as the “'rel-
ativistic boundary conditions’ at a moving interface between
medium | and medium 2. The derivation of these conditions,

in its general form, is well presented in [3) and yields
Unx (Ey=Ey-i, - 0nB,-By =0  (ta)
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i, + (Dy - D) = p, (ib)
Uax (By - By + (@ - oyDy-DBy =7, (o
lin (By-B)=0 (1d)

where E,, D, A,, and B, are, respectively, the electric field,
electric flux density, magnetic field, and magnetic flux density
in medium | and 2; p, and .7, denote the surface-charge and
current densities: U is the velocity of the moving interface
(assumed to be uniform), and 4, is the unit vector normal 10
the interface.

It is important to note from (1) that a scatierer motion trans-
verse to the surface plane (perpendicular 1o the surface nor-
mal) results in boundary conditions similar 1o that of a fixed
object, simply because the term u, - U, is now equal to 0.
It should further be noted that (1) implies that the tangen-
tial E-field at the surface of 2 perfectly conducting moving
boundary can be finite. However. this does not result in an
infinite surface current density because the usual expression.
J = oF. for current density in a material of conductivity o
is no longer valid. Instead, for a uniformly moving obicct,
the total induced current is the result of a conduction current
pius an extra term. Defining 3 as the ratio v/c, ¢ being the
velocity of light in free space. the total current is given by

7= of +0xB) —— (2)
V1 - g8?
where, for a perfect conductor, £ + #x B = 0 from (1);
and therefore the surface current density J, remains finite. In
many refercnces, only small velocities are considered and the
term 82 is neglected compared to 1.

In the derivation of the above equations, no assumption is
made on the speed v relative to the speed of light ¢, hence the
name relativistic boundary conditions. The only assumption
made is that the speed v is uniform. However, the same rela-
tivistic boundary conditions derived for uniform v have been
widely applied 10 study accelerating bodies, under certain con-
ditiont where the acceleration is sufficiently low [4), [27].
Here, a new reference frame called the “‘co-moving frame"
or “‘instantaneous frame " is intrcduced. The difference is that
now the velocity v in (1) represents the instantaneous velocity
instead of the uniform velocity. The term **Doppler approx-
imation" (2] is also used to denote analyses wherein it is
assumed that the instantaneous velocity equals a uniform ve-
locity. It is not within the scope of this paper to discuss the
details of this theory. lts validity in rotating coordinates has
been investigated by Shiozawa (27]. The reader can also refer
to the presentation given in (4] and (9).

For a perfectly conducting moving surface, the boundary
condition (1a) relates linearly the local values of the instan-
tancous total tangenual E- and H-ficlds at the surface of the
conductor (lit side). This reliution. similar in form to that of
a surface impedance. presents a problem lor implementing in
the FD-TD code which computes 77 and 11 values separated

by half-step intervals 1in tune and space 10 v aecessary to
dersve an equivalent Torm ol she rchivisin bondiry condi-
tion for pCl’fCCll)‘ conducting i baces that ool contenlicton y
with this half-slep nonbocalizanon of ficld vabues g the 140
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TD code. Derivation of such an equivalent form is given in
the Appendix.

Using the results of the Appendix, the relativisiic boundary
condition for a moving mirror (in a form appropriate for FD-
TD implementations) is given by

E=2"8%"Cp 3
C—ty T
or
2¢ ;
B8 @

where E and Ef are, respectively, the total tangential electric
field and the incident tangential electric field values at the
mirror surface. B and B' are, respectively, the total tangentia!
magretic field and the incident tangential magnetic field values
at the mirror surface.

Now, the value of the total tangential electric field at the
mirror surface is given in terms of the incident electric field
value at the boundary. The latter is easily obtained from a par-
allel one-dimensional grid already built into the FD-TD code
as a look up table. Implementation of the boundary condition
for a moving mirtor now becomes a simple matter. At each
half-time step when the E-field and the A-field are computed,
respectively, the position of the reflecting mirror in the grid
is first determined. Then, the relativistic boundary conditions
3) or (4) for the field values at the surface of the mirror are
implemented.

C. Approximation of E and H Adjacent to a Moving
Surface

The question arises as to the value of the incident electric
field when the position of the mirror does not coincide with
a point in the grid. For this purpose, linear interpolation is
used. From the geometry of Fig. 1,

¢ -8 - E'G+D+4-E'G)
5, ’
The value of the total electric field at the mirror surface is
stored at the total electric field grid point closest to the surface.
No extra grid points are introduced. In Fig. | for example,
the value of the total electric field at the boundary is stored
at the E(j + 1) point if A < §, ~ A and at the £(/) point if
A>3, ~A
Next, a Faraday's law contour integral is used to compute
the total /H-field adjacent to the mirror surface. (The idea of
contour integral subcell models has been previously used in
the FD-TD analysis of wave penctration through narrow slots
in thick conducting screens [22) and coupling to wires and
wire bundles (23).) Applying Faraday's law, given by

asﬁ-df

at

along the path defined in Fig. 1. and assuming that the H-field
is almost uniform in the shaded region, we obtain
a8

-“ng * (6} -A)

E'at mirror =

(%)

SE»E'-—--— (6)

(E(j+ VH-E(j)y 6 = o)
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ey vedy /dt
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Fig. |. FD-TD field component geometry for the moving murror case in 2

one-dimensional FD-TD gnd.

By applying Ampere's law, a similar contour integral can be
derived 10 compute the total E-field adjacent to the mirror
surface [22).

0. THe Case of A UnirorMLY MovING Mirror,
NormAL ILLUMINATION

A. Existing Analytical Formulation

An incideat sinusoidal plane wave of {requency w; (illumi-
nation frequency) and unit amplitude is normally incident on
a uniformly moving mirror. Referring to Fig. 1, a positive
mirror velocity v means that the mirror is receding from the
incident wave, and a negative mirror velocity means that the
mirror is advancing toward the incident wave. The scattered
electric field is given by [2]

oY
E;(y.t) = - <
1+ -
[o
v
T e - vt
cexpil| —< @t -k +2jk| 222 @®
1+ t-2
¢ c JJ

where yo = v(f = fg) + ro is the position of the murror
boundary with respect to a reference point, and 7, and ¢
are some initial values. (For simplicity, we set both ry and
fo equal to 0.) A “double-Doppler’ eftect is apparent from
(8) in that both the frequency and amplitude of the scattered
field are transformed by the same multiplying factor defined
asa = [l =W/ o))/l + (v/c)}.

B. FD-TD Modifications Considered

Three different FD-TD algorithm modifications for the
electromagnetic boundary condition at a moving surface, dis-
cussed in Section II-B, have been considered in numerical tests
of whether FD-TD can properly model the double-Doppler
effect.

1) The Quasi-Stationary Method— Here, the mirror is
assumed stationary for a complete one-time-step inter-
val. The relativistic boundary conditions are not imple-
mented. Only the position of the mirror is determined
after each full time step. A contour integral model is
used when necessary 1o compute more exactly the H-
and/or E-field next to the mirror surface. Such a method
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TABLE 1
DOUBLE-DOPPLER SHIFTS AS OBTAINED 8Y FD-TD AND
ANALYTICALLY, FOR THREE DIFFERENT MODELS
AND A GIVEN VELOCITY

Case v/e Reflected Amplitude Reflected Frequency
Analytical FD-TD Analytical | FD-TD
Reference 0 1 1 1 1
Quasistatic -1/3 1 0.9783 2 2
Oatwp 200427 at w =9
Sermu relativistic {-1/3 2 1.994 2 2
Qatw#2[0.1308§ at w =9°
Full relativistic [-1/3 2 1.994 2 2
P loatw#2]00523a: =9

¢ Spurious frequency compopents

will give the proper shift in frequency but leaves the
amplitude unchang:d as the theory predicts {2).

2) The Semirelativistic Method—Here, the relativistic
boundary condition is implemented each time for the £E-
field only. In other words. only (3) is used. The value
of the total £-field at the mirror surface is stored at the
closes:, total E-field. grid point to the mirror surface.
No extra grid point is introduced. A contour integral
model is used to compute the H-field next to the mir-
ror surface. This method should be enough to model
the proper physics of the problem. However, usage of
a contour integral model makes the program more dif-
ficult to generalize for arbitrary mirror velocities.

3) The Fully-Relativistic Method— Here, the relativistic
boundary condition is implemented each half-time step
for both the E-field and the H-field using (3) and (4)
respectively. This case does not require a contour inte-
gral model since now the H-field. next to the mirror, is
computed from (4). This method was found to be more
accurate and more general than the previous method.

In all the above three cases, the fields behind the mirror
are set to zero.

C. Comparative FD-TD and Analytical Results

Let us consider the case of a mirror illuminated at normal
incidence by a unit-amplitude sinusoidal plane wave having
2 normalized frequency, w;, = 1. The mirror is assumed to
be advancing toward the incident wave at one-third the speed
of light (v = —¢/3). Table I shows double-Doppler shifrs as
obtained anaiytically and by FD-TD for the three relativistic
moving surface models. The spatial frequency spectrum of
the reflected wave is obtained by taking the Fourier transform
of the FD-TD comnputed field versus position sample after
20 cycles had been stepped. The spatial frequency is scaled
such that a value. w = 10, corresponds to the FD-TD grid
Nyquist frequency (the maximum spatial frequency that the
FD-TD grid can support as a sampled-data system).

It 1s seen that the quasi-stationary boundary conditions
cause the FD-TD code 1o generate a reflected-wave spatial fre-
quency component with the proper upward Doppler frequency
shift (to w = 2) leaving the amplitude almost unchanged as
predicted by the analytical theory of [2). The semirelativis-

tic boundary condition provides the proper Doppler shifts in
both the frequency and magnitude (again of a shift of 2:1)
with a small spurious frequency component. The fully rela-
tivistic boundary condition, causes a further damping of the
undesired frequency component. For both the semi-relativistic
and fully-relativistic cases, the error in the computed ampli-
tude of the properly shifted spectral component at w = 2 is
only 0.3 percent (0.026 dB). The FD-TD computed spurious
frequency component near w = 9 is limited to 6.54 percent
(—-23.7 dB) in the semirelativistic case and 10 2,62 percent
(~31.6 dB) in the fully relativistic case.

fable Il shows double-Doppler results obtained for eight
different mirror velocities using only the fully relativistic
boundary condition. In all of these cases, FD-TD generates
a reflected wave with the proper Doppler shifts in both fre-
quency and amplitude. The error in the FD-TD computed
amplitude of the properly shifted spectral component is lim-
ited 10 less than 1.5 percent (0.]131 dB), and the generation
of spurious frequency componeants is limited to less than §
percent (-26 dB). These spurious components are numerical
antifacts due to the interpolation process used in computing
the incident field at the mirror surface (Section 11-C), and the
storing of the surface field values at the closest grid point
(Section 1I-B). As observed in Table II, these artifacts disap-
pear when the mirror velocity equals c/2 where, at every time
step. the mirror position corresponds exactly to a grid field
point.

IV. Tse UNFORMLY VIBRATING MIRROR

A. Existing Anaiviical Formulation

Referring to Fig. 1, the exact form of the scattered field
from a linearly vibrating mirror is given by a set of two equa-
tions {28]. {29):

d . y
{ =19+ — sin(w.ly) ~ = (9a)
c c

1 = 3 cos (w.1p)

El(y) = ~—eoprr— 2
0 1 + 3 cos(w.ly)

cos(w,lg ~ kd sin(w.lg)

{9b)

where w, is the frequency of the incident wave: y, =
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TABLE U
DOUBLE-DOPPLER SHIFTS AS OBTAINED 8Y FD-TD AND
ANALYTICALLY, FOR UNIFORM VELOCITIES

v/¢ “Reflected Amplitude Reflected Frequency
Analytical ¥D-TD Analytical | FO-TD

1/3 2.000 1.9940 2.000 2.000
Oatw #2 0.0523 at w = 9°

-1/3 1.5000 1.4909 1.5000 1.5000

0&!.:#1.5000 0.0660 at w = 7°
0.075] at w = 9°
iV 1.3333 13239 1.3333 1.3333
Qatw #1.3333 (00613 at v =4
00465 at w = 5°

1/2 0.3333 0.J234 0.3313 0.3333
0 at v #03333] 0atw#0.3333

1/3 0.5000 0.1939 0.5000 0.5000
0 atw gk 0.5000 | 0.0410 at w = 4°

“1/4 0.6000 0.5590 0.6000 0.6000
0 at » # 06000 ; 0.0031 at w = 4
B 0.0021 at w = 8¢

173 0.6666 0.6587 0.5000 0.6000

0 at « 3 0.6000 | 0.0560 at — = §°
0.0164 at w = 6*
1;7 0.7500 0.74161 0.,300 0 75G0
0atw #0.7500 ; 00514 at w =2°
00153 at w = 4°

* Spurious {requency components

d sin (w,?) describes the displacement of the mirror vibrating
with a frequency, w, and 8 = w,d/c = vma/c. Equation
(9b) can also be wrinten in a Fourier series expansion,

Ely.0) = ~Re 3 J-mlam)

me -

m
R 1+ ‘ e/(u,-o-mu.)(l*()/")]
m+2—
@y

(10a)

whete
a,,.=m,s+zkd=a(m+2ﬂ . (10b)
@,

The scattered field spectrum thus contains the incident fre-
quency «; and an infinity of sidebands located at w, + mu,
generated by the vibration of the mirrar.

The scattered field spectrum for the vibrating mirror is very
similar to the spectrum of an FM tone-modulated signal. In
both cases, an infinity of sidebands located at ween + Mwy is
generated, where we. is a center frequency (the illuminating
frequency for the vibrating mirror case, the carrier frequency
for the M case); and w, is the sideband separation (the vi-
bration frequency for the mirror case, the modulating tone
frequency for the FM case). Further, in both cases, the spec-
tral amplitude of the mth sideband is proportional to /,,; a
Bessel function of order m. For the vibrating mirror, the ar-
gument of the Begsel function depends on the amplitude and
frequency of vibration; for FM, the argument depends upon
the amplitude and frequency of the modulating tone.
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B. FD-TD Modeling Procedure

In modeling the vibration of the mirror with the FD-TD
code, we foilow the same procedure as for the uniformly mov-
ing mirror. but use only the fully relativistic boundary con-
dition, and assume that we are in a region where the theory
of the “‘co-moving frame’' is still applicabie [4]. Our interest
will be mainly in the variation of the scattered field amplitude
at the fundamental frequency w,, as a function of mirror vi-
bration frequency w,, and amplitude 4. It is clear from (10)
that at the fundamental frequency, where m = 0, the exact
solution for the magnitude of the scattered field leads to a
Jo(2kd ) dependence, where 2kd = 2B(w,/w.).

C. Comparative FD-TD and Analytical Results

Fig. 2 shows the magnitudes of the sideband components
of the reflected field spectrum for a vibrating mirror having
a vibration frequency w,, equal to 0.1 times the illumination
frequency w,; and a maximum mirror surface velocity equal to
0.1 times the speed of light. The plotted values are computed
using both the exact solution of (10) and the FD-TD method
with fully relativistic boundary conditions and a spatial reso-
lution of 20 cells per wavelength of the illuminating wave. An
excellent correspondence is noted between the exact and FD-
TD numerical data. The error in computing the magnitude of
the reflected component at the illuminating frequency is only
0.27 percent (0.02 dB).

As mentioned carlier, an important test for the FD-TD ap-
proach is 10 compare the variation of the scattered field am-
plitude at the illuminating frequency with the exact solution
as mirror vibration parameters are changed. Noting that the
exact solution states that the argument of the Bessel func-
tion weight for this spectral component is dependent upon
the product of maximum normalized mirror velocity. 3, and
w,/w,. the FD-TD modelirg proced:ire should trace out the
same Bessel function variation of the scattered field ampli-
tude at the illuminating frequency regardless of whether 3 1s
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Fig. 3. Companson of FD-TD and analytical results for the scanered field

magnitude at the 1llumination {requency. o: exact values; o: FD-TD values
for w, = Sw,: &: FD-TD values for 8 = 0.1c.

varied while keeping w,/w, fixed, or whether w,/w, is vared
while keeping 8 fixed. Fig. 3 graphs the results of numerous
trials of the FD-TD procedure wherein these parametric stud-
ies (and corresponding Fourier analyses) were conducted with
the fully-relativistic boundary conditions incorporated into the
FD-TD code. For the first case where 8 is varied from O to
0.5, the ratio of illumination frequency w,, to mirror vibra-
tior. frequency w,, is fixed at 5; and the product of 28(w;/w,)
varies between O and 5. For the second case where £ is fixed
at 0.1, w,/w, is varied from 0 to 25; and again the product of
28(w;/w,) varies between 0 and §.

Fig. 3 shows that the FD-TD numerical predictions for the
scattered field amplitude at the illuminating frequency are very
close to the Bessel function Jo behavior given by the exact so-
lution as the mirror vibrational parameters vary. The accuracy
of the FD-TD predicted scattered field amplitude is essentially
the same, regardless of whether 8 is fixed or w;/w, is fixed
during the parametric study. These results indicate that the
FD-TD code, with fully relativistic boundary conditions at
the mirror surface, is properly modeling the physics of the
vibrating mirror problem, including the interesting scattered
field null at the first zero of the Bessel function.

V. ExTENSION of MEeTHOD TO TwO-DIMENSIONS

A. Problem Description: Oblique Incidence on a Vibrating
Mirror

In this section we consider the case of oblique plane wave
incidence on an infirite vibrating mirror. This case, analyzed
by De Zutter (30). is much more complicated than the normal
incidence case in that it has no closed-form solution. The
solution is written in an infinite-series form using plane-wave
expansions, where the unknown coefficients in the series are
obtained numerically, as described in {30]. In that paper. the
ficld amplitude versus time is calculated at different points
along the symmetry axis of the mirror, anG for various angles
of incidence.
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B. FD-TD Modeling Procedure

An approach analogous to the one-dimensional case is
adopted to implement the relativistic boundary conditions in a
two-dimensional FD-TD code. The two-dimensional case ap-
proach is again based on the **Doppler approximatian™ (2],
{28). [30), where it is assumed that the mirror moves with a
uniform velocity equal to the instantaneous vibrational value.
Propagation delays are accounted for by assuming that reflec-
tions are generated at the “‘precursor” position of the mirror.
In {28), an analysis of the normal incidence case, the precur-
sor”” positions coincide for all points of the mirror. In [30), an
analysis of the oblique incidence case, this feature is lost, and
a similar approximate solution ignores the propagation delays.
However, propagation delays are automatically accounted for
in the FD- TD code by virtue of its time-domain nature.

From the special theory of relativity, a wave reflected from
a uniformly moving mirror has a reflected angie 8,, given as
(26)
cos 8,(1 + %) - 28

1-28cos 6, + gt~
A derivation similar to the one-dimensional case leads to the

following relativistic boundary conditions suitable for FD-TD
implementation:

(1

cos b, =

B(cos 8, + cos 8))

1 £B cos 6, " E

E= ¢ (12)

_ (cos 8, + cos 8))
" cos 8;(1 £Bcosb,)

where 8 = v/c and the fields refer to total tangential field val-
ues. The numerical steps involved are now only slightly more
complicated because of the angular dependence of the incident
field values at the mirror surface. From (11) it is clearly seen
that cos 8, is a function of v. Therefore, the reflected wave
has a spread both in frequency and spatial reflection angle
{30).

A validation is sought for the oblique incidence case of
the infinite plane mirror modeled by De Zutter. Since it is
impossible to exactly model an infinite mirror in a finite
two-dimensional grid, we select a long, thin, rectangular,
perfectly-conducting slab as the model for the infinite mir-
ror, as shown in Fig. 4. The relativistic boundary conditions
(12) and (13) are implemented on the front and back sides of
the object. The other two sides, parallel to the velocity vector,
are insensitive to the motion of the object, and therefore no
relativistic boundary conditions are required there.

The use of a finite-length rectangular slab to mode! the infi-
mite mirror introduces edge diffraction artifacts. To minimize
the edge effect, we select a slab long enough to appear from
the observation point as infinite during a well-defined early-
time response when the edge effect has not yet reached the
observation point. Since the transvarse electric (TE) case does
not provide substantially different results than the transverse
magnetic (TM) case {30], only the TM case is considered.
Such a test should provide us with good insight as to the
ability of FD-TD to handle moving boundary problems in two
dimensions.

- H (13)
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C. Comparative FD-TD and Analytical Results

Fig. S shows good agreement between the FD-TD re-
sults and the analytical results obtained from {30] for the
envelope of the scattered £ field versus time for 8, =
30°,8 = 0.2.kd = I, and observation points 2/d = -$§
and /d = -50. Similar agreement is shown in Fig. 6 for
8 = 30".3 = 002, and kd = 0.1. Fig. 7 compares the
FD-TD and analytical results tor 8, = 60°.8 = 0.2, and
kd -~ 1. For both z/d = -5 and z/d = -50, a2 good
correspondence is noted between the analytical and FD-TD
numerical data.

In general, the FD-TD method gives good results, ard it
1s fair to claim that this techric ¢, unique in its approech
for numerically muodeling moving boundaries. is a promising
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resulus.

strong tool to analyze inore complicated p.uvolems involving
arbitrary moving shapes.

V1. SuMMarY AND CONCLUSION

A numerical approach based on the FD-TD technique, us-
ing fully relativistic electr ymagnetic fi. Id k. undary conditions
at the surface of a conducicr, has been formulated to model
scattering from perfectly conducting moving mirrors in one
and two dimeasions. The numerical approach is unique in
that it requites no system transformation, contrary to other
possible numerical methods where the problem is first solved
in the moving frame 2nd then transfoimed back to the rest
frame. For nonunifoim velocities, the concept of a **Doppler-
approximation™ was used. Since the stability of the FD-TD
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code is assured by the proper selection of the space and time
increments, and since no new iterative equation coupled to the
original FD-TD equations is introduced, the method remains
stable. Two types of cne-dimensional relativistic mirror mo-
tion have been considered: uniform translation and sinusoidal
vibration of the mirror surface. Comparison with the exact,
analytical solution, for these types of mirror motion indicates
that the new numerical approach accurately computes the mag-
nitude and frequency of spectral components resulting from
the scanering process. Physics that appears to be properly
modeled includes the double-Doppler effect (uniform transla-
tion case) and FM-like spectral sidebands (sinusoidal vibra-
tion case). When extended to two dimensinns, the code again
shows gouod agreement with the available analytical results for
the case of oblique incidence upon an infinite vibrating mirror.
Here. the physics involved is much more complicated than in
one dimension because both propagating and nonpropagating
avanescent modes are generated at the mirror surface.

The FD-TD code that has been constructed can be directly
adapted to model other types of moving-boundary problems
involving two- and three-dimensiona!, perfectly conducting
bodies of finite size and arbitrary shape. A logical extension
of the cxisting approach involves developing more general,
suitable clativistic boundary conditions to model scattering
by mov, = objects having a finite conductivity without using
a system U ineformation.

APPENDIX

The following is a derivation of an equivalent relat:vistic
boundary condition suitable for modeling moving perfect con-
ductors ia the FD-TD grid. The incident wave is assumed (0
be polarized in the positive z-direction and propagating, in
the positive y-direction with an amplitude of unity. Thus, the
incident ficlds are given by

L' = e/c.,(l-y/ﬂ
13
and
1
2 :_E,’ .
The reflected L-field will have the form
E] = Ag/t4re
so that the 1efle~ted 3-fieid in free space will then be given
by
-1

) A = E{.

The total B-field is therefor=
1 .
B, =B, +B, = _(E/-L)

but, since

E; =E| -E,
therefore

|y
Bl, a E\ZE‘ - E;)

For a mirror receding from the incident wave, the relativistic
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boundary condition is given by
E]-v-8,=0
Substituting for B! in the above equation we get
E! - :-fm:'; -EhH=0.

‘Therefore, the final form for £/ is

E! =2—_E. (14)
c+v

Similarly. for the total B-field at the boundary we have
B, = ZE!-E).
Substituting for E; in the above equation with £; = ¢8;. we
get finally for the B-field
2c

c+v

Equations (14) and (15) are the ones used in our code (o
implement the proper relativistic boundary conditions at the
surface of the murror.

(15)

d
B, =

I'e
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The scattering of a plane wave from the oben, end of a Aanged, parallel plate waveguide is approximately solved using the
On-Surface Radiation Condition method. Simple explicit formulae are given for the field within the waveguide and for the
bistatic cross-section. In addition, our theory also gives an approximate solution to the associated open cavity problem, which
is formed when the waveguide is terminated by a short circuit positioned a finite distance from the aperture. These problems
serve as prototypes for receiving antennae and open resonators respectively. Numerical results are presented which confirm
the accuracy of the OSRC method. An interesting byproduct of our analysis is the approximate prediction of the complex

eigenfrequencies of' the open resonator.

1. Introduction

In this paper, we study the interaction of waves
with an infinitely flanged, parallel-plate waveguide
which is either infinite in extent or short-circuited
at a finite distance along its length. (See Fig. 1.)
The former casz serves as a prototyps for haih
receiving antennas and simple re-entrant structures
while the seenpd modeis 3 bosle Yehaholiz ves-
ondior. We restrict our attention here to scalar
waves 50 that the results ¢biaiized are applicable
to acoustics and electromagnetics in two dimen-
sions.

The method we develop is approximate and is
based upon the On-Surface Radiation Condition
method (OSRC) which has been recently
developed to analytically model the scattering of
waves by convex targets {1, 2,3]. In this method
a differential operator (radiation boundary
operator) which annihilates the scattered field as

r- is applied directly on the surface of a targ::.
Then, both the field and its normal derivative can
be deduced from this approximate condition and
the given boundary condition for the scatterer.
In this paper, we apply an annihilating operator
to the scattered field in the aperture of a parallel-
plate waveguide and again obtain 1 relaucnship
between the field and ts normal derivative. Com-
bining chis result with the comrtinsity of the totat
field and its normal derivative in the aperiure, we
effectively decouple the waveguide region from the
half-space z <0. This allows us to explicitly deter-
mine the field within the waveguide without
recourse to matrix inversion [4], ray tracing [5, 6],
or hybrid method [7]. From this result, we also
obtain (with the aid of a Green’s function rep-
resentation) the scattered field in the region 2 <0.
The results of our approximate OSRC theory
for penetrating and scattered fields compare
extremely well with detailed numerical computa-

0165-2125/89/83.50 ‘T 1989, Elsevier Science Publishers B.V. { North-Holland)
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Fig. 1. Planc wave st angle a illuminates the open end of a
flanged, infinite, parsllel plate waveguide. The cavity problem
is created by placing s short at the position = d,

tions obtained using 3 time-dependent finite
difference scheme (FD-TD) [8, 9] apnlied directly
1o the field equations. Excellent agreement is found
for both the infinite waveguide case and the short-
circuited waveguide. In the former cass a key
OSRC resuir shows that the scattered field exhibits
“resonant” frequency behavior. This is again
verified by the FD-TD scheme. Moreover, we are
able to use our approximate results to oblsin sn
estimate of the open resonastor's “eigenlrequen-
cies”. These are complex numbers whose
imaginary pans dictate the rate at which energy
lesks away {tom the open cavity.

The remainder of this paper will now be out.
lined. Section 2 contains the formuiation of the
scattering problem snd Section 3 includes the
extension of the OSRC method that is required to
handle the present problem. Section 4 contains the
results of several illustrative examples which
clesrly indicate the sccuracy of our approximate
method. And finslly, Section 5 includes a deriva.
tion of the approximate '‘sigenfrequencies’’ of our
prototype Helmholiz resonator.

2. Formuistion

The goometry of the flanged paraliel-plate
waveguide is shown in Fig 1. Here x and 1 rep-

resent nondimensional variables which have been
scaled with respect to the guide’s physical width
a. The total field, U(x, 2, k) satishies the Helmholtz
equation
AU+ kU =0, 2<0 with |xj<a,
and z> 0 with0<x <1, (2.1a)

where k = wa/ ¢ and ¢ is the wave's speed, and the
boundary condition

U=0, (r,2)eR “L1b)

where R represents the boundary composed of the
flange and the waveguide's wails. A time depen-
dence of exp(iwt) has been assumed and will be
suppressed in the subsequent equations.

An incident plane wave given by

Upnelx, -, k) mexp[-ik(z cos a - xsin a)]
(2.2)
impinges upon this target and scatters from it.
Accordingly, the total field U~ in the region z<0
is given by
U s U, Ax 2, k)~ Unclx, -2, k)
+ulx, 2, b1, 2<0, (2.3
where the second term in (2.3) is the wave reflected
by the flange and v is the scattered field caused
by the waveguide. The latter satisfies the Helmholt2

equation (2.18) for z < G and the Sommerfeld radi-
ation condition

fim Jr[-"-+iku] -0 (2.4)
14

re®

where r =[x’ +2°)"%,

When the wall at 2 = d (the short circuit) is not
present, the total field in the waveguide, U", is
given by

U= T, erpi~1k.z)
xgin(nnwx), 2>0. (2.58)

When the wall at 2= d is present, the 10tal field
in the waveguide is given by

U =) T.(expl-ik.z) - v exp(ikaz))}

=gin{anx), O0<z<d {2.5b)
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Fig. 1. Plane wave at angle a illuminates the open end of &
flanged, infinite, parallel plate waveguide. The cavity problem
is created by placing a short at the position z=d

tions obtained using a time-dependent finite
difference scheme (FD-TD) [8, 9] applied directly
to the field equations. Excellent agreement is found
for both the infinite waveguide case and the short-
circuited waveguide. In the former case a key
OSRC result shows that the scattered field exhibits
“resonant” frequency behavior. This is again
verified by the FD-TD scheme. Moreover, we are
able to use our approximate results to obtain an
estimate of the open resonator's “‘eigenfrequen-
cies”. These are complex numbers whose
imaginary parts dictate the rate at which energy
leaks away from the open cavity.

The remainder of this paper will now be cut-
lined. Section 2 contains the formulation of the
scattering gioblen, und Saction 3 includgs the
sxtension of the QSR methed tha, is reguived 10
handle the present problem. Section 4 contains the
resuits of several illustrative examples which
clearly indicate the accuracy of our approximate
method. And finally, Section 5 includes a deriva-
tion of the approximate *‘eigenfrequencies” of our
prototype Helmholtz resonator.

2. Formulation

The geometry of the flanged parallel-plate
waveguide is shown in Fig. 1. Here x and z rep-
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" 'resent nondimensional variables which have been

scaled with respect to the guide’s physical width

a. The total field, U(x, z, k) satisfies the Helmholtz

equati(m
AU+KU=0;

and z>0 with 0<x<1,

z <0 with |x| <o,
(2.1a)

where k = wa/c and ¢ is the wave's speed, and the
boundary condition
U=0, (x,2)eR 1 2.1b)

where R represénts the boundary composed of the
flange and the waveguide’s walls. A time depen-
dence of exp(iwt) has been assumed and will be
suppressed 4in the subsequent equations.

An incident plane wave given by

U.nc(x, 2, k) =exp{—ik(z cos a = x sin a)]
(2.2)
impinges upon this target and scatters from it.
Accordingly, the total field U~ in the region 2<0
is given by

U™ = Uacx, 2, k) = Unc(x, —2, k)
+u(x, z, k), z2<0, (2.3)

where the second term in (2.3) is the wave reflected
by the flange and u is the scattered field caused
by the waveguide. The latter satisfies the Helmholtz
equation (2.1a) for 2 <0 and the Sommerfeld radi-
ation condition

- f[a .. 17
Hm V- La; ﬂk::j =0 (2.9)

--on

where r =[x’ +27}"%
When the wall at z=d {the short circuit) is 5t

present, the total field in the waveguide, U”, is

given by

UT=% T, exp(—ik,z)
(2.5a)

xsin(nmx); z>0.

When the wall at z=4d is present, the total field
in the waveguide is given by

U* =% T.{exp(-ik,z) - v, exp(ik,2)}

xsin(nnwx); 0<z<d. (2.5b)
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-, The summation in (2.5) runs over all positive
- integers n. The propagation constants k, and the

. reflection coefficients y, are defined respectively by

(2.6a)
(2.6b)

k,, =[k2"(’|1‘l’)2]”2.
¥~ = exp(-2ik,d).
The transmission coefficients T, are to be deter-
mined.
To complete the formulation of our boundary
value problem, we demand that U and 3/dz U be

continuous along the waveguide aperture z = 0 and
0<x <1, that is,

U™(x,0, k)= U"(x,0, k), 0<x<l,

(2.7a)
I I, ..,
—U7(x,0,k)=—U"(x,0,k), 0<x<I.
az az

(2.7b)

Finally, using standard Green's function argu-
ments, we find that the scattered field is given in
terms of U(x, 0, k) by

1 . d I3
U(x',0, k) HS(kR) —R’f-

(2.8a)

u(x, z, k)= J

0

where H{" is the derivative of the zeroeth order
Hankel function and R is defined by

~a ) i3

~e

il

R=j. - b)
Here we note that U(x, 0, k) = u(x,0, k) by (2.3).

We can physically interpret the above scattering
problem in terms of electromagnetics or acoustics.
In the electromagnetic case, U would be the ampli-
tude of the electric field vector which is polarized
along the y-axis, and the waveguide and flange
would be perfectly conducting. In the acoustics
case, U would be proportional to the pressure,
and the waveguide and flange would be acousti-
cally “soft™.
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‘3. Exteasion of the OSRC method

The scattered field u satisfies the radiation boun-
dary condition [10, 11]

3 2 Lu s
< ‘+ikly—-—————=0
o v ikl o)
(3.1a)
as r-»oc where L is defined by
¥ u
=|——u+-|. 3.1b
Lu [aa’" 4] (3.10)

In our previous work [1] we applied (3.1) directly
on the surface of a two-dimensional convex target
by setting the O(r™°) term equal to zero and
replacing r™' by x, r~*3’u/36° by 3°u/as’, and
du/3r by du/3v. Here, « is the curvature of the
target's boundary curve, s is the arclength, and
3/9v is the outgoing normal derivative.

We now apply the same operator to the
scattered field u in the aperture of the flanged
waveguide. We set x equal to zero because the
aperture is planar, replace s by x in the second
tangential derivative, and » by -z in the normal
derivative. This yields the approximate condition

i @

9
=— u—iky——— 0,
Bu u-—iku YEA

0<x<l,z=0. (3.2)

We note here that the operator B can also be
obtained by an approximate factoring of the Helm-
holtz equation in rectangiiar ccordinates [12].

Nenn weg dodues rom (2,71 amd the definition
OV tha woersior B that

BU"=BU",

0<x<l,z=0, 3.3)

Inserting (2.3) into the right-hand side of (3.3) and
using (3.2), we find that

BU =g(x), 0<x<1,:z:=0 (3.4a)
where the function g(x) is defined by
g(x) = =2ik cos a exp(ikx sin a),

O0<x<l. (3.4b)

e i

i b s

Ol lis ok bt - bk
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(3.5a)
(3.5b)

Y G,T, sin(nmx)=g(x), 0<x<l1,
¥ J. T, sin(nwx)=g(x), 0<x<],

where the sums are again over integer n and

G,.=—-i[k,,+k—2—llz(n1r)2], (3.6a)
Jn=_i[kn(1+7n)+k(l-7n)

1 2

2k(l ¥»)(nm) ] (3.6b)

Finally, we use the Fourier inversion formula to
solve (3.5) for the unknewn coefficients T,. We

find that

~ Applying the operator B to U* given by (2.5) and
" combining this result with (3.4), we obtain

T,=4dikcoc a g, (ksina)/ G, (3.7a)
for the flanged waveguide and '
T,=4ikcosag,(ksina)/J, (3.7b)

for the short-circuited waveguide (open res-
onator), where g,({) is

ntw n X
m[l-(-l) exp(i{)],
gn(g)::‘ C¢nﬂs (308)
%, {f nw.

The approximate field within the waveguide is
obtained by combining (2.5a), (3.62), (3.7a), and
(3.81. The analogous expression for the field wittin
the oper resgnater as ziven Ly (2.55), (3.eb).
(4700, 1nd (3.8).

The scattered field is given by (2.7) with
U(x, 0, k) replaced by either (2.5a) or (2.5b). By
using standard far-field approximations in (2.8)
we find that, as r» o,

—ikr

u(x, z, k)~ A(6, k) - (3.9a)
Al(B, k)= ksin 8(2nk)""?
xexp(—in/4)Y T,g,(cos 8) (3.9b)

where g,({) is defined in (3.8) and 6 is measured

e a2
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from the x-axis in a counter-clockwise direction
(see Fig. 1).

4. Nlustrative examples

The accuracy of (2.5) and our approximations
(3.7) is now demonstrated in two illustrative prob-
lems. In the first example, a flanged infinite
waveguide is illuminated by a plane wave having
!~8 and impinging at an incident angle a as
shown in Fig. 1. Two values of a are chosen: a =0°
(normal incidence) and a=30°. The second
example is the associated cavity problem created
by terminating the waveguide with a short circuit
at a distance d from the aperture. For both
examples, we compute the field distribution at = =3
using (2.5) and the bistatic cross-section of the
scattered field, in the region z <0, using (3.9).

The accuracy of the OSRC method is assessed
by comparing its results to those obtained using a
finite difference scheme applied directly to the
time-dependent field equations. The accuracy of
finite difference time domain (FD-TD) methods
on the problems we consider here is well estab-
lished [8, 9]. In the first case, the infinite waveguide
is modeled using FD-TD by a sufficiently long,
finite waveguide which is terminatcd by a short.
In the FD-TD simulation, this structure is illumi-
nated by a sinusoidal incident plane wave and
time-stepped for a sufficient number of wave cycles
tn ailow the numencal solution within two
wovabengans 6f B2 apennte 10 reach e time.
harmonic steady-state. The waveguide length and
number of time steps is carefully chosen to guaran-
tee, that reflections from the terminated end are
not present in the aperture region of interest. For
the second example, the depth of the cavity d is
selected to be the same as the aperture width. The
FD-TD cavity simulation is performed on a
domain considerably smaller than that for the
infinite waveguide. Here, however, more wave
cvcles are required to be time-stepped for the simu-
lation to achieve the time-harmonic steady-state
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20
18

[ - |U| FOTD
18} -~ |U| OSRC

| U(x, 2/3, 8) |

L

due to the structure’s ability to trap energy for a
period of time.

With k=8, the dimensions of the infinite
waveguide are such that only the first two modes
propagate. The results of our OSRC and FD-TD
calculations for the infinite waveguide example are

0.5 0.8 0.7 0.8 0.9 1.0

X

Fig. 2. Distribution of field magnitude inside infinite waveguide at = = for a =0°.

presented in Figs. 2 through 7. Figs. 2 and 3 show
respectively the magnitude and phase of
U™ (x,0.666, 8) for @ =0°. For this case, only the
first term in the sum (2.5) need be evaluated
because T, =0, by symmetry. The corresponding
results for @ =30° are presented in Figs. 4 and §

10

Phase (d=grees)

0, e—a-w W‘wah& g

-* Phase FDTD
—+ Phase OSRC

1 I i 1 i i

-10 A
0.0 0.1 0.2 0.3 0.4

0.5 0.6 0.7 0.8 0.9 1.0

X

Fig. 3. Distribution of field phase inside infinite waveguide at z =3 for @ =0°,
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0.5 0.6 0.7 0.8 0.9 1.0

Fig. 4. Same as Fig. 2 except a = 30°.

respectively. Both propagating modes are excited
for this case and thus, only the first two terms in
(2.5) are needed for our approximate solution.
These excellent results indicate that the on-surface
radiation condition operator effectively couples
the energy of the incident plane wave into the

propagating waveguide modes. We have also
included several evanescent modes in (2.5) and
found little change in the far field and a deleterious
change in the aperture field.

The bistatic cross section of the scattered field
in the region, > <0, is shown in Figs. 6 and 7 for

20
o | EEEEttteey
- Phase FDTD

20 | -+ Phase OSRC
—~ -40
»
@ -
[ VN
b Y
F wl
Q -80
A
-] '~ L
w0 r
E a0k
m p

-140 b

!

160 b

-180 |

‘200 ! 1 1 A i A L | 1 3 1 e 1 e

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 5. Same as Fig. 2 except a = 30°
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Fig. 6. Bistatic cross-section for the field scattered from the aperture of the infinite waveguide in the region 2 <0 for a =0". The
angle @ is as shown in Fig. L.

each value of a. Again, excellent agreement is
observed between the results obtained using the
on-surface radiation condition approach and those
obtained by the FD-TD simulation. It should be
noted that the amount of computer time required
to evaluate the formulae generated by the OSRC

theory is negligible (less than 0.006% ) compared
to that of a typical FD-TD simulation for the
idealized problems considered here.

The results of the companion calculations for
the open resonator example are presented in
Figs. 8 through 13. These results are for k=8 and

20

| A |2

T T
100 120 140 160 180

theta (degrees)

Fig. 7. Same as Fig. 6 except a = 30°.
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X

Fig. 8. Distribution of field magnitude inside the cavity at z =3 for a =0".

a=d=1. Once again, good agreement between
the OSRC results and the FD-TD simulations
is observed.

Figure 14 shows the OSRC and FD-TD com-
puted values for U™(0.5, 0.0, k) as a function of
k. The FD-TD result is obtained by simulating an

impulsive plane wave followed by an FFT. The
agreement is good for 3.5 < k <8 and deteriorates
outside this band, which approximates the range
of frequency components in the impulsive plane
wave. The error at very low frequencies is caused
by the OSRC method, which is consistent with our

10
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W 4T
8
o
@
T
A
@
(2]
]
-: .
a Ll
S
!
8F
.10 IS 1 A 1 A 1 'l e L 1
00 o1 02 03 04 05 06 07 08 09 1.0
X

Fig. 9. Distribution of field phase inside the cavity at z =3 for a =0°.
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Fig. 10. Same as Fig. 8 except o =30°.

previous observations [1], and the onset of cut-oft
which occurs at k = w. Additional errors can occur
with the OSRC solution at other cut-off frequencies
k= n= (if those modes are excited) because the
energy is not out-going in the aperture. In the
present case, the odd modes are excited while the

even ones are not. The peaks (except for the first
one) and sharp nulls in the response occur roughly

at the eigenfrequencies of the “‘closed™ cavity
kim=mu{n*+m’/d*]"? (4.1)

and show a resonance behavior for the open struc-

2 & o8 & 8

8
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3

20t
b
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-200 mm——

0.0 0.1 0.2 0.3 0.4

Fig. 11. Same as Fig. 9 except a = 30°
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Fig. 12. Bistatic ‘cross-section for the field scattered from the aperture of the cavity in the region 2 <0 for & = 0°. The angle 6 is as
shown in Fig. 1.

ture. The deviation between the kf ,, and the real 5. Complex eigenfrequencies of the open cavity
part of the complex eignefrequency, as predicted

by the OSRC method, will be discussed in the next The complex ecigenfrequencies for the open
section. cavity can be approximated using our OSRC

4.8

0.0 T T T T T T T T
0 20 40 60 8o 100 120 140 160 180
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Fig. 13. Same as Fig. 12 except a = 30°.
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Fig. 14. Behavior of field magnitude as a function of wavenumber k at the mid-point of the cavity aperture (a =0°).

theory by setting the denominator of T, equal to
zero. Accordingly, setting J, =0 in (3.6b), solving
for v,, and simplifying the resulting expression we
obtain

Yo =(k+k,)*/(nm)*, (5.1
Inserting the change of variable

k=nmncos 6 (5.2)
into (2.6) and (3.1), we find that

exp(A sin §) = exp(4i6) (5.3a)

where A is defined by

A =2nnd (5.3b)

Equating the exponents in (5.3a), modulo 2, and
setting 6 = x+iy, we deduce that x and y satisfy
the simultaneous equations

dx+2mm

A (5.4a)

cos x sinh y =

4y

sin x cosh y = ——;\‘-. (5.4b)

An approximate solution of the system (5.4) can
be obtained when A is large by observing that the
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right-hand sides of (5.4) are formally small.
Accordingly, we replace sinh y by y, sinx by x,
cos x by 1, and cosh y by 1, and obtain a linear
system whose solution is

2msA
y=l6+Ar (5.5b)

Combining these results with the definition of 8
and (5.2), and using the small argument approxi-
mation for the cosine, we deduce the approxi-
mation

X {1 32n’m? . 27r2m:A2}
=n - 3.3 S
U T 6+ A (16+45)2
. 16m3m3a
+inw{—— .
m-f{(w_*_r)_} (5.6)

We have also solved the nonlinear system (5.4)
by employing a Newton-Raphson scheme using
the approximation (5.5) as an initial guess. Once
the solution was obtained, we set 6 = x+iy, inser-
ted this complex number into (5.2), and separated
the real and imaginary parts of k. The results of
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- Table 1

n Complex eigenfrequencies for m = -1

Iterative solution Approximate solution

of (5.4) using (5.6)

1 3.773+i0.9447 3.615+i1.013

2 6.865+i0.3758 6.865+i0.4122

3. 9.877+i0.1923 9.883+i0.2035

4 1293+i0.1148 12.93+i0.1189

Table 2

n Complex eigenfrequencies for m = -2
Iterative solution Approximate solution
of (5.4) using (5.6)

1 6.135+12.473 5.034 +i 4.051

2 8.524+i1.174 8.611+11.649

3 11.16+i 0.6620 11.26+i0.8139

4 13.96+i0.4161 14.02+10.4756

our effort are shown in Table 1 for m=-1,n=
1,2,3,4,and in Table 2 for m=-2,n=1,2,3,4,
Negative values for m were chosen to ensure that
the imaginary part of k was positive. The first
column in each table contains the roots generated
by the iterative scheme while the second lists those
obtained from (5.6). The two columns agree well
for m = —1 but deviate, especially for n=1 and
m=-2,

Finally, the deviation between the closed-cavity
eigenfrequencies given by (4.1) and the real parts
of k listed in Tables 1 and 2 differ by less than
2% for n=2,3,4 and by about 12% when n=1.
The imaginary part of the eigenfrequencies,
which measures the rate at which energy leaks
out of the open cavity, decreases as m increases.
This indicates that the higher modes are
trapped longer in the resonator and agrees with a
ray interpretation.
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Applications of the finite-difference time-domain (FD-TD)
method for numernical modelng of electromagnetic wave interac-
tions with structures are reviewed, concentrating on scattering and
radar cross section (RCS). A number of two- and three-dimensional
examples of FD-TND modeling of scattering and penetration dre
provided. The ob; . - modeled range in nature from simple geo-
metrc shapes to extremely complex aerospace and biological sys-
tems. Rigorous analytical or experimental validations are provided
for the canonical shapes, and 1t is shown that FD-TD predictive
data for near lields and RCS are in excellent agreement with the
benchmark data. It is concluded that, with continuing advances in
FD-TD modeling theory for target features relevant to the RCS
problem. and with continuing advances in vector and concurrent
supercomputer technology, it is likely that FD-TD numencal mod-
eling will occupy an important place in RCS technology in the 1390s
and beyond.

I. INTRODUCTION

Accurate numerical modeling of the radar cross section
(RCS) of complex objects is difficult. Typical structures of
interest have shapes, apertures, cavities, and material com-
positions or loadings which produce near tields that cannot
be resolved into finite sets of modes or rays. Proper numer-
ical modeling of such near fields requires sampling at sub-
wavelength resolution to avoid aliasing of magnitude and
phase information. The goal is to provide a self-consistent
model of the mutual coupling of electrically smali regions
{space cells) comprising the structure.

A candidate numerical modeling approach for this pur-
pose is the finite-differerice time.domain (FD-TD) solution
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of Maxwell’s curl equations. This approach is analogous to
existing finite-difference solutions of fiuid-flow problems
encountered in computational aerodynamics, in that the
numerical model is based on a direct solution of the gov-
erning partial differential equation. Yet FD-TD is a nontra.
ditional approach to numerical electromagnetic modeling,
where frequency-domain approaches have dominated.
FD-TD is very simple in concept and execution. Yet it is
remarkably robust, providing highly accurate modeling
predictions for a wide variety of electromagnetic wave
interaction problems, One of the goals of this paper is t0
demonstrate thatrecent advances in fD-TD modeling con-
cepts and software implementation, combined with
advances in supercomputer technology, have expanded the
scope, accuracy, and speed of FD-TD modeling to the point
where it may be the preferred choice for scattering prob-
lems invoiving complex, electrically large, three-dimen-
siomal structures. With this in mind, this paper will suc-
cinctly review the following FO-TD modeling validations:

1) Canonical two-dimensional targets
a) Square metal cylinder, TM polarization
b) Circular muscle-fat-layered cylinder, Tt polariza-
tion
¢} Homogeneous, anisotropic, square material cyl-
inder, TM polarization
d) Circularmetal cylinder, conformally modeled, TE
and TM polarization
¢} flanged metal open cavity
2) Canonical three-dimensional targets
a) Metal cube, broadside incidence
b) Flat conducting plate, multiple rmonostatic RCS
observations
¢} T-shaped conducting target, multiple monostatic
RCS observations

The potential of FD-TD for modeling noncanonical,
indeed very complex, three-dimensional objects will then
be illustrated by reviewing published work which inves.
tigated the penetration of VHF and UHF plane-wave energy
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into 1) the infrared seeker section of a missile and 2) the
entire human body. Finally, the paper wili conclude with
a discussion of large-scale computer software and the
potential impact of massively concurrent machines.

. Ceneral CHARACTERISTICS OF FD-TD

As stated, FD-TD is a direct solution of Maxwell’s time-
dependent curl equations. It employs no potentials.
Instead, itapplies simple second-order accurate central-dif-
fererce approximations (1) for the space and time deriva.
tives of the electric and magnetic fields directly to the
respective differential operators of the curl equations. This
achieves a sampled-data reduction of the continuous elec-
tromagnetic field in a volume of space over a period of time.
Spaceandtime discretizations are selected to bound errors
in the sampling process and to ensure numerical stability
ofthealgorithm (2]. Eleciric and magnetic field components
are interleaved in space to permit a natural satisfaction of
tangential field continuity conditions at media interfaces.
Overall, FD-TD is a marching-in-time procedure which sim-
ulatesthe continuous actual waves by sampled-data numer.
ical analogs propagating in a data space stored in a com-
puter. At each ime step, the system of equations to update
th= field components is fully explicit, so that there is no need
tos2tuporsolve asystemof linear simultaneous equations.
As 2 consequence, the required computer storage and run-
ning time is dimensionally low, proportional only to N,
where N is the number of electromagnetic field unknowns
in the volume modeled.

Fig. 1(a) illustrates the time.domain wave tracking con-
cept of the FO-TD method. A region of space (within the
dashedline) s selected for field sampling in space and time.
Attime = 0, itis assumed that all fields within the numerical
sampling region areidentically zero. An incident plane wave
1s assumed to enter the sampling region at this time. Prop-
agation of the incident wave is modeled by the commence-
mentof time-stepping, which is simply the implementation
of the finite-difference analog of the curl equations. Time
stepping cuntinues as the numerical analog of the incident
wave strikes the modeled target embedded within the sam-
pling region. All outgoing scattered wave analogs ideally
propagate through the lattice truncation planes with neg-
ligible reflection to exst the sampling region. Phenomena
such as induction of surface currents, scattering and mul-

Lottice Truncation Plone
Jiaviedie To Al Woves)

Y A

Arbitrory
Structure

X A
Ipnc-acnvrv :\K
an .
ane Wave, : 1

reileiz2)8
(a)

tiple scattering, penetration through apertures, and cavity
excitation dre modeled time step by time step by the action
of the curl equations analog. Self-consistency of these mod-
eled phenomena is generally assured if their spatial and
temporal variations are well resolved by the space and time
sampling process.

Time stepping is continued until the desired late-ime
pulse response or steadv-state behavior is achieved. An
importantexample of the latter is the sinusoidal steadv state.
wherein the incident wave is assumed to have a sinusoidal
dependence, and time stepping 15 continued until all tields
in the sampling region exhibit sinusoidal repetition. This
is a consequence of the limiting amplitude principle (3].
Extensive numerical experimentation with FD-TD has
shown thac the number of complete cycles of the incident
wave required to be time stepped to achieve the sinusoidal
steady state is a function of two (possibly related) factors:

1) Target electrical size. Numerical wave analogs must
be permitted time to propagate in the FD-TD computa-
tional lattice to causally connect the physics of all regions
of the target. For many targets, this requires a number of
time steps sufficient to permit at least two complete iront.
lo-back-to-front traverses of the target by a wave analog
traveling at the speed of light. fFor example, assuming a tar-
getspanning a maximum of 10 wavelengths, itis reasonable
to assume that about 40 complete cycles of the incident
wave should be time-stepped (as a minimum) to achieve the
sinusoidal steady state. Using a space resolution of 10 lat-
tice cells per wavelength, this corresponds to 800 time steps.

2) TargetQfactor. Targets having well-defined low-loss
cavities of low-loss dielectric comoositions may require the
number of complete cycles of the ncidentwave 1o be time-
stepped to approach the Q factor of the cavity resonance.
Because the Qfactor can be large even for electrically small
or moderate size cavities, this consideration can gictate how
many time steps the FO-TD code must be run to achieve
the sinusoidal steady state.

Table 1 summarizes th~ number of sinusoidal cycles
needed to achieve the steady state for awide range of struc-
tures modeled using FO-TD over the past 15 years. In the
RCS area, it has been found that target electrical size has
proven to be the dominant factor. Cavities for RCS-type
problems tend to be open, and therefore low Q; and the
use of radar-absorbing material (RAM) serves further to
reduce Q factors of structural resonances.

b

Fig. 1. Basic elements of FD-TD space lattice (a) Time.domain wave tracking concept.

(by Lattice unit cell in Cartesian coordinates (1).
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Table t Convergence of FD-TD to Sinusordal Steady
State

Number of Sinusoidal

Cycles Needed General Structyre Type

s$ Convex 2-0 metal targets spanning less
than 1 A\, TM case

Lossy 3-O structures, especially those
comprised of biological tissue media

Convex 2-D metal targets spanning 1-§
No. TE case

Convex 2-D dielectric 1argets spanning
1-5 Ao, TM and TE cases

Convex 3.D me1al targets spanning 1-5
Ao

3.D metal wires and rods spanning on
the order of 1 A, excited near a
resonance

Generai 3-D metal targets spanning up
10 10 X, including corner reflectars
and open cavities

Deeply reentrant 3-D metal targets
(such as engine inlets) spanning 10 A
or more

3-D metal targets of arbitrary electrical
size, but having aperture/cavity
resonances of moderate to high Q,
and excited very near such a
resonance

20-40

z40

2100

Fig. 1(b) illustrates the positions of the electric and mag-
netic fieid components about aunit cell of the FD-TD iattice
in Cartesian coordinates [1). Note that each magnetic field
vector component is surrounded by four circulating elec-
tric freld vector components, and vice versa. This arrange-
ment permits not only a centered-difference analog to the
space derivatives of the cur! equations, but also a natyral
geometry for implementing the integral form of Faraday’s
law and Ampere’s law at the space-cell level. This integral
interpretation permits a simple but effective modeling of
the physics of smoothly curved target surfaces, as will be
seen later.

Fig. 2dlustrates how an arbitrary three-dimensional scat-
Py terer 1s embedded in an FD-TD space lattice comprised of

the unit cells of Fig. 1(b). Simply, the desired values of elec-
trical permittivity and conductivity are assigned to each

(E%, A%

J--;...--s..--.v

Fig. 2. A:bitrary three-dimensional scatterer embedded in
FD-TO space lattce.

electric field component of the lattice. Correspondingly.
desired values of magnetic permeability and equivalent
conductivity are assigned to each magnetic field compo-
nent of the lattice. The media parameters are interpreted
by the FD-TD program as local coefficients for the time-
stepping algorithm. Specification of media properties in
this component-by-component manner resultsina stepped-
edge, or staircase, approxim-«on of curved surfaces. Con-
tinuity of tangential fields is assured at the interface of dis-
similar media with this procedure. There is no need for spe-
cial field matching at media interface points. Stepped-edge
approximation of curved surfaces has been found to be
adequate in the FD-TD modeling problems studied in the
1970s and early 1980s, including wave interactions with bio-
logical tissues [4], penetration into cavities [5)-[7], and elec-
tromagnetic pulse (EMP) interactions with complex struc-
tures [8]~(10). However, recent interest in wide-dynamic-
range models of scattering by curved targets has prompted
the development of surface-conforming FD-TD approaches
which eliminate staircasing. These are summarized in a later
section.

1, Review of FD-TD ALcOriTHm DeTans

Table 2lists the six coupled equations for the electric and
magnetic fields which comprise Maxwell’s equations in
Cartesian coordinates. Table 3lists the assumed space-time

Table 2 Maxwell's Curl Equations in Cartesian

Coordinates
aH, 179 ag, ’
—a-(— -l “
VT y ° ) 2
aH,
—--I(P—E-‘-a—f'- Hv) (1b)
at u \ 0x az
aH, 1/3, @,
— m e[ e — a5 1
m - : (Oy o p ,) (§19]
3, 1 [aH, OH,
e | —t e - o
T ( % Y a[,) (1d)
1 (2, ae)
a e\ a2z 3 ') ¢
&, 1/, 4N
ot § - — e ——
m - : ( o ay 05,) (1)
where

£, £, £, = Cartesian components of electric field, voiis/meter
H, H, H, = Cartesian components of magnetic field, amperes/
meter
electric permittivity, larads/meter
alectric ¢conductivity, ssiemens/meter
magnetic permeability, henrys/meter
equivalent magneuc 10ss. ohms/meter

‘.tqa

Table 3 Central-Difference Approximations 1o Space and
Time Partial Derivatives

{1, 7. k) = (1Ax, 14y, kA2) 23)
Fu, 1. k) = FliBx, jAy, kAz, nAl) 2b)
F gk FPue bk = Fh0 =1 k)
- + order (AxY (3a)
ax 3x
F . g k) F* g k) = FP7 %,y k) :
m - " + order (at?) (3b)

For a cubic space lattice. &x » 4y » 3z @ §.
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Table 4 Examples of Finite-OiHerence Expressions to Time-Step Field Vector ®
Components
Y IOVE ik + hat
n 2uit, ) + 4 kb [} Lk+d
e : - CH~- )
HEMg e ke b ol L ks har sk d
+ n
uii,; + 4.k + )
at 1 L
- - - .
“(l,l?!,k’h . D'('-I’i:k’hér
* i, v Lk + B
Elijg vy k=0 -E0,4+4 Kk
~ °
. E,  k+ D ~ENi.y+ 1 k+) 4a)
ay
alr, ). k + 1).\!
. 2, i, k + P i
A e W YRR ®
SILLEZ TS
i j. k + P
at 1
- " —
k- di. j, k + Pat
1+ :
2eli, ), k + 9
H) W e d ke ) =H)2 =4 ) k= ] Y
ax
N j =4 ke p=H jrhk+)
* ! * 4b)
ay
1
notation for the field vector components sampled at dis- where ¢, is the maximum wave phase velocity within the o
crete lattice locations and at discrete time steps. This table model. Note that the corresponding stability criterion set
also provides the central-difference approximations to the forth in {1, eqs. (7) and (8)] is incorrect, as shown in (2].
space and time partial derivatives of Maxwell’s equations, ¥ig. 3(a) illustrates the division of the FD-TD lattice into
using the assumed sampled-field notation. Finally, Table 4 total-field and scattered-field regions. This division has been
provides example finite-difference time-stepping expres- found to be very useful since it permits the efficient sim-
sions for a magnetic and an electric field component. As ®
noted earlier, al! quantities on the right-hand side of each Regon 1
time-stepping expression are known (stored in computer inrarsenng —— Total
memory), so that the expressions are fully explicit. Srructure ] 101ds
The choice of §and Atis motivated by reasons of accuracy r-= Regon 2
. pe . ——
and algorithm stability, respectively. To ensure the accu- Connecting Scarrered
racy of the computed spatial derivatives of the electro- Sutoce ond Frods
magnetic ficlds, § must be small compared to a wavelength. Source ®
3 s N0 is sufficient to realize less than +£7% uncertainty Larmee
(£0.6 dB) of the FD-TD solution of neir fields due to the
. . . ey ) (@
approximation of the spatial derivatives [S). For § s N20,
this uncertainty drops to less than £2% (£0.2 dB). § should -(!';?__-__._ . .it.'._ﬂ_')__1
also be small enough to permit resolution of the principal T ®i @ '
surfaces or volumetric details of the structure modeled. ! Hat o ! '
To ensure the stability of the time-stepping algorithm ' ' ! o SouRES . ¢
exemplified by {4a) and (4b), &t is chosen to satisfy the in- ! == ® :
H \
equality (2] ! sca '“"!:. ;.c' wo reos
-17 mcecaca=aa! [ -l
1 1 1 ) 1 M‘l"’ Torah® BodaT®
al 5 + 4 — co (% . ey
= (.Txf YLy e ®)
5 fig. 3. Zoning of FD-TD space lattice. (a) Total-field and ®
< for a cubic lattice (5) scatteced-field regions (11, (12). (b) Near-field to far-fieid
ComV integration surface loczted in the scattered-field region (12].
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vlation of an incident plane wave in the total-field region
with arbitrary angle of incidence, polarization, time-domain
waveform, and duration [11), (12). Three additional impor-
tant benefits arise from this lattice division as follows.

1) Large near-field computational dynamic range. Be-
cause the target of interest 1s embedded in the total-field
region, low total-field levels in shadow regions or within
shielding enclosures are computed directly without suf-
fering subtraction noise (as would be the case «f scattered
fields in such regions were time-stepped, and then added
toacanceling incident field to obtain the low total-field lev-
els). Avordance of subtraction noise is the key to obtaining
near-field computational dvnamic ranges exceeding 60 dB
(5.

' Natural satisfaction of electromagnetic boundary con.
ditions. Embedding thetargetinthe total-field region per-
mits a natural satisfaction of tangential field continuity
across media interfaces, as discussed earlier, without hav-
ing to compute the incident field at possibly thousands or
tens of thousands of points along complicated media-inter-
facelocithatare unique to each target. The zoning arrange-
ment of Fig. 3(a) requires computation of the incident field
only along the rectangular connecting surface between
total-tield and scattered-field regions. This suriace is fixed,
that is, independent ot the shape or composition of the
enclosed target being modeled. A substantial benefit in
computer running time arises as a result, a benefit that
increases as the complexity of the target increases.

3) Systematic computation of bistatic RCS. The provi-
sion of a well-defined scattered-field region in the FD-TD
lattice permits the near-field to far-field transformation
illustrated in Fig. 3(b). The dashed virtual surface (field
observation locus) shown in Fig. 3(b) can be located along
convenientlattice planesinthe scattered-field region of Fig.
3(a). Tangential scattered £ and H fields computed via FD-
TD at this virtual surface can then be weighted by the {:ee-
space Green’s function and then integrated (summed) to
provide the far-tieldresponse and RCS (full bistatic response
for the assumed illumination angle)(12]-(14]. The near-field
integration surface has a fixed rectangu'ar shape and thus
isindependent of the shape or composition of the enclosed
target being modeled.

Fig. 3(a) uses the term "!attice truncation” to designate
the outermost lattice planes in the scattered-field region.
The fields at these planes cannot be computed using the
centered-differencing approach discussed earlier because
of the assumed absence of known field data at points out-
side of thelattice truncation. These data are needed to form
the central differences. Therefore, an auxiliary lattice trun-
cation condition is necessary. This condition must be con-
sistent with Maxwell's equations in that an outgoing scat-
tered-wave numerical analog striking the lattice truncation
must exit the lattice without appreciable nonphysical
reflectron, just as if the lattice truncation was invisible.

It has been shown that the required lattice truncation
condition is really a radiation condition in the near field
(15]-(17). A very successful second-order accurate finite-dif-
ference approximation of the exact radiation condition in
Cartesian coordinates was introduced in [11]. This approx-
imation was subsequently usedin avariety of two- and three-
dimensional FD-TD scattering codes (12}-(14), vielding
excellent results for both near and far fields. (For exzmple,
all FD-TD results in this paper, with the exception of the

missile seeker model of Section VI, were obtained using
these codes.) However, recent interest in wide-dynamic-
range models of scattering has prompted research in the
construction of even more accurate near-field radiation
conditions, including fixed third-order approximations (18],
[19), adaptive conditions [20), and predictor-corrector con-
ditions (21]. The goal here is to reduce the numerical lattice
noise due to nonphysical reflections of wave analogs at the
lattice truncations by at least one order of magnitude (20
dB) relative to that achieved by the second-order condition
of (11).

IV. FD-TD MOOELING VALIDATIONS FOR CANONICAL TwO.
DimensiONAL TARCETS

Analytical and code-to-code validations have been
obtained relative to FOD-TD modeling of a wide variety of
canonical two-dimensional targets. Both convex and reen-
trant (cavity-type) shapes have been studied. Further, target
material compositions have included perfect conductors,
homogeneous and inhomogeneous lossy dielectrics, and
anisotropic dielectric and permeable media. Selected val-
idations will be reviewed here.

A. Square Metal Cylinder, TM Polarization [12}

Here we consider the scattering of a TM-polarized plane
wave obliquely incident upon a square metal cylinder of
electrical size kos = 2, where s is the side width of the cyi-
inder. The FD-TD grid employs square unit cells of size
§/20, and the grid truncation (radiation boundary) is located
at a uniform distance of 20 cells from the cylinder surface.

Fig. 4 compares the magnitude and phase of the cylinder
surface electric current distribution computed using FD-
TD tothatcomputed using a benchmark frequency-domain
electric-field integral equation (EFIE) method-of-moments
(MoM) code. The MoM code assumes target symmetry and
discretizes one-half of the cylinder surface with 84 divi-
sions. The FD-TD computed surface current is taken as
A x H,, where £ is the unit normal vector at the cylinder
surface and H,,, is the FD-TD value of the magnetic field
vector component in free space immediately adjacent to
the cylinder surface. From Fig. 4 we see that the magnitude
of the FO-TD computed surface current agrees with the
MoM solution to better than +1% (+0.09 dB) 2t all com-
parison points more than 2 FD-TD spa~acells from the cyl-
inder corners (current singularities). Y ne phase of the FD-
TO solution agrees with the MoM solution 10 within =3°
at virtually every comparison point, including the shadow
region.

B. Circular Muscle-Fat-Layered Cylinder, TE Polarization
(22]

Here we consider the penetration of a TE-polarized olane
wave into a 15-cm-radius muscle-fat-layered cylinder. The
inner layer (radius 7.9 cm) is assumed to be comprised of
muscle having a relative permittivity of 72 and a conduc-
tivity of 0.9 S/m. The outer layer is assumed to be comprised
of fat having a relative permittivity of 7.5 and a conductivity
010.048 S/m_ Anillumination frequency of 100 MHz is mod-
eled. with the FD-TD grid cell size set equal to 1.5 cm
(approximately 124 wavelength within the muscle). A
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stepped-edge (staircase) approximation of the circular layer
houndaries is used.

Fig. 5, taken from (22), shows the analytical validation
results for the magnitude of the penetrating electric field
vector components along two cuts through the muscle-fat
cylinder, one parallel to the direction of propagation of the
incident wave, and one parallel to theincident electric field
vector. The exact solution is obtained by summing suffi.
cient terms of the eigenfunction expansion to assure con-
vergence of the sum. Excellent agreementof the FD-TD and
exact solutions is noted, even atjump discontinuities of the
field or the slope of the field distribution that occur at the
layer boundaries. This fine agreement is observed despite
the stepped-edge approximation of the circular layer
boundaries.

C. Homogeneous, Anisotropic, Square Material Cylinder.
TM Polarization [23)

The ability to independently specify electrical permittiv-
ity and conductivity for each £ vector componentin the FD-
TD lattice, and magnetic permeability and equivalent con-
ductivity for each H vector component, leads immediately
to the possibility of using FD-TD to mode! material targets
having diagonal-tensor electric and magnetic properties.
No alteration of the basic FD-TD algorithm is required. The
more complicated behavior associated with off-diagonal
tensor components can also be modeled, in principle, with

200°F ——— MOM (80-Peat Sohren] some algorithm complications (24).

270" 44404 #0-10(8.Crem Sonnen) Recent development of analytical and numerical treat-
ment of coupled surface combined-field integral equations

- 300 +

Positson On Cyhnder Surface

(b)

Fig. 4. Comparison of FD-TD and EFIE-MOM results forlon-
gitudinal surface electric current distribution induced on a
perfectlyconducting squarecylinderof size kos = 2.(a) Mag-
nitude. (b) Phase (12].

(CFIE) for modeling scattering by arbitrarily shaped two-
dimensional anisotropic targets [23) has permitted detailed
tests of the accuracy of FD-TD anisotropic models. Fig. 6
illustrates the results of one such test. Here the magnitude
of the equivalent surface electric current induced by TM
illumination of a square anisotropic cylinder is graphed as
a function of position along the cylinder surface for both

2% v —pnyee 0.30 v
°” 028 b o <
0.20 020}t 4
S0 Sol1s} 4
0.10 0.10 b 1
008 N 008 }
0.00 e . — - o L FITYY
"e0.18 <040 =006 GO0 0¢8 0.0 °3oo 008 010 0.8
- y-azis
{ vy
E
y
1 o1
012} 4
@ —_— Fooe} J
i
0.04 | 4
Hl
o % A A
fat muscle 00 008 010 018 y axis

Fig. 5. Comparison of FD-TO and exact summed-eigenfunction solutions for distriby- |
tions of penetrating electric field vector components within a circular muscle-fat-layered
cyhnder, TE polarization case at 100 MMz [22).

TAFLOVE AND UM

ASHANKAR: FD-TD NUMERICAL MODELING




[
L]

4.
iy

€12 Bu2 Py CFIE sontron
Ro3*S  #'e90t ¢ 0 o  FO-TD{12cyches)

(Frequesxy 130 Mw2)

xl$

A

.20

NAGNITUDE OF THE ELECTRIC CURRENT

H
)
&

2

|

8 o’

éJ L] °°

)

g > s
.00 1-00

0.20 0.40 .80 c.80
NORNALIZED CONTOUR LCENGTH
Fig. 6. Comparison of FD-TD and CFIE-MoM results for
longitudinal surface electric current distribution induced

on an anmisotropic dielectric-permeable square cylinder of
size kos = 5, TM case (23).

the FD-TD and the CFIE MoM models. The incident wave
propagates in the +y direction and has a +z-directed elec-
tric field. The square cylinder has an electrical size ko5 =
5, permittivity ¢;,, = 2, and diagonal permeability tensor u,,
=2and u,, = 4. For the test shown, the FD-TD grid cell size
is set equal to /50, and the radiation boundary is located
at a uniform distance of 20 cells from the cylinder surface.

From Fig. 6 we see that the FD-TD and CFIE resuits agree
verywell almosteverywhere on the cylinder surface, despite
the presence of a complicated series of peaks and nulls.
Disagreement is noted at the cylinder corners where CFIE
predicts sharp local peaks, but FD-TD predicts local nulls.
Studies are continuing to resolve this corner pnysics issue.

0. Circular Metal Cylinder, TE and TM Polarization

A significant flaw in previous FD-TD models of con-
ducting structures with smooth curved surfaces has been
the need to use stepped-edge (staircase) approximations of
the actual structure surface. Although not a serious prob-
lem for modeling wave penetration and scattering for
low-Q metal cavities, recent FD-TD studies have shown that
stepped approximations of curved walls and aperture sur-
faces can shift center frequencies of resonant responses by
1-2% for Q fac-ors of 30 to 80, and can possibly introduce
spurious nulis {25). In the area of scattering by convex
shapes, the use of stepped-surface approximations has him.
ited application of fD-TD in modeling the important class
of targets where surface roughness, exact curvature, ang
dielectric or permeable loading are important factors in
determining the radar c-oss section.

Recently three different types of FD-TD coniormal sur-
face modelc have been proposed and examined for scat-
tering problems:

1) Locally distorted grid models. These preserve the
basic Cartesian grid arrangement of field components at all
space cells except those immediately adjacent to the target
surface. Space cells adjacent to the target surface are
deformed to conform with the surface locus. Shghtly mod-
ified time-stepping expressions for the field companents
in these cells are obtained by applving either a modified
finite-volume technique [26) or the integral form of Fara-
day’'s law and Ampére’s law about the perimzters of the
deformed space cells [27).

2) Clobally distorted grid models, body fitted. These
employ available numerical mesh generation schemes to
construct non-Cartesian grids which are continuously and !
globally stretched to conform with smoothly shaped tar-
gets. In effect, the Cartesiangrid is mapped to anumeically
generated coordinate system wherein the target surface .
contour occupies a locus of constant equivalent “radius.” i
Time-stepping expressions are adapted either from the
Cartesian FD-TD case [28) or from a characteristics-based
method used in computational fluid dynamics (29].

3) Clobally distorted grid models, unstructured. These
employ available mesh generation schemes to construct
non-Cartesian grids comprised of an unstructured array of
space-filling cells. Target surface features are appropriately
fitinto the unstructured grid, with local grid resolution and
cell shape selected to provide the desired geometric mod-
eling aspects. An example of this class is the control-region
approach discussed in (30).

Research is ongoing for each of these types of conformal
surface models. Key questions concerning the usefulness
of each model include the following:

1 Cornputer resources involved in mesh generation

2) Severityof numerical artifacts introduced by grid dis-
tortion, nicluding numerical instability, dispersion,
nonphysical wave reflection, and subtraction noise
limitation of near-field computational dynamic range

3) Comparative computer resources for running the
actual RCS models, especially for three-dimensional
targets spanning more than 10 wavelengths

The accuracy of locally distorted grid models using the
integral form of Faraday's law applied around the perim-
eters of the deformed space cells adjacent to a smoothly
curved target is illustrated in Fig. 7 for TE and TM illumi-
nation cases. Here a moderate-resolution Cartesian FD-TD
grid (having 1/20 wavelength cell size) is used to compute
the azimuthal or longitudinal current distribution on the
surface of a ka = S circular metal cylinder. For both polar-
izations itis seen that the conformal FD-TD model achieves
an accuracy of 1.5% or better at most surface points relative
to the exact series solution. Computer running time for the
conformal FD-TD modei is essentially the same as ior the
old staircase FD-TD model since only a few H components
immediately adjacent to the target suriace require a slightly
mod:fied time-stepping relation.

£ Flanged Metal Open Cavity [20], [31]

Here we consider the interaction of a TM-polarized plane
wave obliquely incident upon a flanged metal open cavity.
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Fig. 7. Comparison of FO-TD and exact summed-eigenfunction solutions for surface
electric current distribution induced on a k,a = 5 circular conducting cylinder (conformatl
FD-TD model used, 0.05 wavelength grid cell size). (a) TE case, azimuthal current. (b) TM

case. longitudinal current (27).

The open cavicy is formed by a flanged parallel-piate wave-
guide having a plate spacing a = 1 m, short-circuited by a
metal plate located at a distance d = 1 m from the aperture.
At the assumed illumination frequency of 382 MHz, ka =
kd = 8, and only the first two TE waveguide modes prop-
agate within the open cavity. An oblique angle of incidence
a = 30° is assumed for this case.

Fig. 8 compares the magnitude and phase of the pene-
trating electric field within the cavity 2/3 m from the aper-
ture computed using FD-TD to that obtained analyticaliy
using a cavity modal expansion and on-surface radiation
condition (OSRC) theory (31]. Good agreement is seen.' Fig.

"It should be noted that the results obtained using the cavity
modal expansion and OSRC represent a good approximation, but
not a ngorous solution.
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9 shows a similar comparison for the bistatic RCS pattern
due to the induced aperture field distribution. Again, good
agreement is noted.

V. FD-TD Mooetunc VALIDATIONS £OR CanOnICAL THReE-
DiMENSIONAL TARGETS

Analytical, code-to-code, and experimental validations
have been obtained relative to FD-TD modeling of a wide
variety of canonical three-dimensional structures, includ-
ing cubes, flat plates, corner reflectors, and aperture-per-
forated cavities. Selected validations will be reviewed here.

A. Metal Tube, Broadside Incidence [13]

Results are now shown for the FO-TD computed surface
electric current distribution on a metal cube subject to
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plane-wave illumination at broadside incidence. The elec-
tric current distribution is compared to that computed by
a standard frequency-domain MoM code which discretizes
target surfaces using triangular patches. It is shown that a
veryhigh degree of correspondence exists between the two
sets of predictive data.

The detailed surface current study involves a cube of
electrical size kys = 2, where s is the side width of the cube.
For the FD-TD mode!, each face of the cube is spanned by
20 x 20 space cells, and the radiation boundary is located
at auniform distance of 15 cells from the cube surface. For
the MoM model, :ach face of the cube is spanned by either
18 or 32 trianguiar patches to test the convergence of the
MoM mode!. Comparative results for surface current are

graphed along two s*raight-line loci along the cube: abcd,
which is in the plane of the incident magnetic field, and
ab’c’'d, which is in the plane of the incident electric field.

Fig. 10comparesthe FD-TD and MoM results for the mag-
nitude and phase o1 the “looping” current along ab'c'd.
The FD-TD values agree with the high-resolution MoM data
to better than £2.5% (+£0.2 d8) at all comparison paints.
Phase agreement for the same sets of data is better than
+1°. (The low-resolution MoM data have a phase anomaly
in the shadow regio 1.} In Fig, 11, comparably excellent
agreen.entis obtainer for the z-directed current along abcd,
but only after ince:poration of an a priori edge-correction
term in the MoM code [32) to e~able it to properly model
the current singularities at the cube corners b and ¢.

A94

PROCEEDINGS OF THE IEEE, VOL. 77, NO. 5, MAY 1989




40
4.4
40-
3ad
321
2019
2.4

201

1 A | squared

124

v— Y ™ T M

[.[¢] 100 120 ‘140 160 180

theta (degrees)

Fig. 9. Comparison of FD-TD and modal/OSRC approximate solution for bistatic radar
cross section due to induced aperture field distributior of tlanged open cavity {20}, [31].

8. Flat Conducting Plate, Multiple Monostatic
Observations [14], [24)

We next consider a 30 x 10 x 0.65 ¢m flat conducting
plate target. At 1 GHz, where the plate spans 1 x 13 a
comparison is made between FD-TD and ‘oM results for
the monostatic RCS versus observation-angle /look-angle}
azimuth, keeping the elevation angle fixed at 90° as shown
in Fig. 12(a). Here the FD-TD mode! uses a uniform cell size
of 0.625 cm (A\y48). forming the plate by 48 x 16 x 1 cells.
The radiation boundary is located at a uniform distance of
only 8 cells from the plate surface. for the MoM model, a
study of the convergence of the computed broadside RCS
indicates that the plate thickness must be accounted for by
using narrow <ide patches, and the space resolution of each
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Fig. 10. Comparison of FD-TD and EFIE-MOM results for
surface < xctric current distribution induced along £-plane
locus of a perfectly conducting cube of size kys = 2. (a) Mag-
nity .e. {0) Phase [13).

patch should be finer than approximately 0.2 Ay. As a result,
the MoM model forms the plate by 0 x 3 x 1divisions.
yrelding a total of 172 triangular surface patches. Fig. 12(a)
shows excellentagreement between the two models, within
about +0.2 dB.

At9GHz, the plate spans 9 x 3 Ny, and the use of the MoM
model is virtually precluded because of its large compu-
tational burden. 1f we follow the convergence guidelines
discussed, the plate would require appproximately 50 x 15
x 1 divisions to properly converge, yielding a tota! of 3260
triangular surface patches and requiring the generation and
inversion of a 4890 x 4890 complex-valued system matrix.
On the other hand, FD-TD remains feasible for the plate
at 9 Gi':z. Choosing a uniforim cell size of 0 3125 cm (A,
10.667), the plate is formed by 96 x 32 x 2 cells. With the
radiation boundary again located only 8 celis from the plate
surface, the overall lattice size is 112 x 48 x 18, containing
580 608 unknown field components (real numbers). Fig.
12(b)shows excellentagreement betweenthe FO-TD results
and measurements ¢, the monostatic RCS versus iook-angle
azimuth pertormed in the anechoic chamber faciiity oper-
ated by SRlinternational. The observed agreementis within
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1dB and 1° of look angle. As will be seen next, this level
of agreement is maintained for more complicated three-
dimensional targets having corner-reflector properties.

C. T-5h->ed Target, Multiple Monostatic Observations
/74]' [21

Welast caonsider the monostatic RCS pattern of acrossed-
plate target comprised of two flat conducting plates elec-
trically bonded together to form the shapeofaT. The m in
plate has the dimensions 30 x 10 x 0.33 cmand the "bisect-
ing’" fin has the dimensions 10 x 10 x 0.33 ¢m. (Due to a
construction error, the centerline of the bisecting fin is
actually positioned 0.37 cm to the right of the centerline of
the main plate. This is accounted fur in the FD-TD model.)
The illumnation 1s a 9.0-GHz flane wave at 90° elevation
angle, polarized TE with respect to the main plate. Thus the
entire T-shaped target spans 9 x 3 x 3 Ay. Note that mono-
static RCS observations at azimuth angles o' between 90°
and 180°, as defined in Fig. 13, are influenced by substantial
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corner reflector physics. Thisiscomplicated by the fact that
the sides of the corner reflector have unequal lengths (3x,
versus 4.5Xg), and further the target 1s not simply a single
corner reflector, but actually two corner reflectors, back tn
back.

For this target, the FO-TD model uses a uriform cell size
of 0.3125 ¢m (X/10.667), forming the main plate by 96 x 32
x 1 cells and the bisecting fin by 32 x 32 x 1 cells. With
the radiation boundary again located onlv 8 cells irom the
target’'s maximum surface extensions, the overall lattice size
is 112 x 48 x 48 cells, containing 1548 288 unknown field
components, and encompassing a total volume of 212.6
cubic wavelengths. Starting with zero-field initial condi-
tions, 661 time stegs are used per monostatic observation
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to attain the sinusuidal steadv state, equivalentto 31 cycles
of the incident wave at 9.0 GHz.

Fig. 13 compares the FD-TD predicted monostatic RCS
vaiues at 32 key look-angle azimuths vetween 0° and 180°
with measurements performed by SRI International. Tnese
azimuths are selected to deline the major peaks and nulis
of the monostatic RCS pattern. Itis seen that the agreement
15 again excellent: in amghitude, within about 1 dB over a
total RCS-pattern dynamic range exceeding 40 d8: and in
azimuth, withir. 12 inlocating the peaks and nulisof the RCS
pattern. Note especially the fine agreement {or azimuths
preater than 90°, where the asymmetrical corner reflector
induces an enhancemyent of the morostatic RCS response
with substantial fine-grained detail in the RCS pattern. As
ofthe publication of [14], this case (and similar cases studied
i {24]) represented the largest detailled three-dimensional
fnumerical scattering models of anv type ever verified
wherein a uniformly fine spatial resolution and the abunity
to treat nonmetallic zomposition are incorporated in the
model.

VI, Pcre-iniaL of FD-TD rFOrR MOOELING VERY COnPLEY
OsicTs

Two characterisics of FD-TD cause it to be very prom-
ising for numerical modeling of electromagnetic wave
interactions with very complex objects. 1) Dielectric and
permeable medra can be specified independently for each
electric and magnetic field vector component in the three-
dimensional volume being modeled. Since there may be
tens of mdlions of such vector components i large FO-TO
modals, inhomogeneous media 2f enarmous complexity
can be specified in principle. 2) The required computer
resources for this type of detailed volumetric modeling are
dimensionally low, only of order N, where N i1s the number
of space cells in the FDO-TD lattice.

The emergence of supercomputers has recently permit-
ted FO-TD to be seriously applied to a number of very com-

A97

TAFLOVE AND UMASHANKAR: FO-TO NUMERICAL MODELING

plex electromagnetic wave interactron problems. Two of
these are reviewed brefly.

A. UHF Penetration inio a Cormrplex Missile Seeker
Section (3], [7]

Here FO-TD 15 applied 1o model the penetration of an
axially incident 300-MHz plane wave into a metal-coated
missile guidance section. The FD-TOD model. shown in Fig.
14, contains the following elements: 1) mzgnesium flyoride
infrared dome, 2) fiberglass nose cone and its external metal
coating, 3) circular nosa aperture just bazk of the infrared
dome, 4) head coil assembly, 5} cooled detectr unit with
enclosing phenolic ning, 6) preamphfier can, 7) wire bundle
connecting the cooled detector unitto the preamplifier can,
8) wire bund'e connecting the preamplifier can to the metal
backplane, 9) longitudinal meial support rods, and 10) cir-
cuimferential sleeve-fitting aperture, loaded vith fiberglass,
where the seeker section joins the thruster. The fiberglass
structure of the nose cone and its metalization are approx-
imated in a stepped-surface manner, as is the infrared dome.

For this target, the FD-TD model uses a uniform cell size
of 1/3 cm (Xy/300), with an overall lattice size of 100 x 48 x
24 cells containing 690 000 unknown field compornents. (A
single symmetry plane is used, giving an effective lattice
size of 100 x 48 x 48.) The model, implemented on a Con-
trol Data STAR-100 (the available supercomputer at the
time), was run for 1800 time steps, equivalent to 3.0 cycles
of the incident wave at 300 MHz.

Fig. 15 plots contour maps of the FD-TD computed field
vector components attne symmelry plane of the model. An
important observation is that the wire bundles connecting
the cooled detector unit, preamplifier can, and metal back-
plane are paralleied by high-level magnetic field contours
{F1g. 15(by]. This is indicative of substantial uniform current
flow along each bundle. Such current tlow would generate
locally a magnetic ficld looping around the wire bundle
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which, when "cut” by the symmetry p'ane, snows up as
parallel field contours spaced equally on each side of the
bundle. Using a simple Ampere’s law argument, the com-
mon-mode bundle currents can be calculated, thus obtain-
ing a key transfer function between free-field incident UHF
plane-wave power density and coupled wire currents within
the loaded seeker section [5). Thistransfer functionis useful
for studies of intersystem electromagnetic compatibility
and vulnerability to high-power microwaves.

Although th-< 1nssae sexver model was structured to
demonsirat - the capaoihly ©; FD-TD to map fields pene-
trating imcr o complex structure having multiple apertures
ard s nstic internal engineering details, it should be
undezsicod that the full bistatic RCS pattern of the target
is available as a "by-product’” with virtually no additional
eHort. Further, with the 1.3.cm space resolution used, the

FO-TD penetration/RCS model discussed is useful up to 9
GHz.

B. Whole-Body Human Dosimetry at VHF and UHF
Frequencies [33], [34]

Here FD-TD is applied to model the penetration of plane
waves at VHF and UHF frequencies into the entire human
body. Directly exploiting the ability of FD-TD to model
mediainhomogeneities down tothe space-celllevel, highly
realistic three.-dimensional FD-TD tissue mcdels of the
complete body have been constructed. Specific elecirira’
parameters are assigned to each of the elec'ric field vector
components at the 16 000 to 40 000 space cells comprising
the body model. Assignments are based on delailed rross-
section tissue maps of the body (as obtained via cadaver
studies available in the medical iiterature), and cata'> jed
measurements of tissue dielectric properties. Uniform FD-
TD spaceresolutions as fine as 1.3 cm throughout the entire
human body have proven feasible with the Cray-2 super-
computer.

Fig. 16, taken from {34), shows the FD-TD computed con-
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tour maps of the specific absorption rate (SAR) distibution
along horizontal cuts through the head and liver of the
three-dimensional inhomogeneous human model. In fig.
16(a) the incident wave has a power density of 1 mW/cm?
at 350 MHz, while in Fig. 16(b) the incident wave has the
same  ywer density butis at 100 MHz. These contour maps

iilustrate the high level of detail of local features of the SAR
distribution that is possible via FD-TD modeling ior highly
realistic tissue models. By implication, these results also
show the applicability of FD-TD modeling to ultracomplex
electromagnetic wave-absorbing media for RCS mitigation
technology.

1 m/ca? plane wave power density

|
TN,
o o

140

wyaball sockets

180 mM/Kg

J'{,!;_)/)
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plane wave power density

Are /D
20 Kidneys

Fig. 16. FD-TD computed contour maps of specific absorption rate “SAR) due 10 pen-
etrating electromagnetic fields within a highly realistic three-dimensional mode! of the
entire human body. (s) Alung honizontal cut through head at 350 MH_ ib) Along horizontal
cut through hiver at 100 MHz [34).
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The FO-TD method is naturally suited 1or large-scale pro-
cessing by state-of-the-art vector supercomputers and con-
current processors. This is because essentially all ot the
arithmetic operations involved in a typical FD-TD run can
be vectorized or cast1nto a hughly concurrent tormat. Fur-
ther,the orderiN)demandtorcomputer memory and clock
cvcles iwhere N s the number oi lattice space cells) s
dimensionally low and permits three-dimensiona! FO-TD
maodels ot arbitrary targets spanning 50-100 A, to be anti¢-
ipated in the earlv 1990s.

A. Cray-8ased Processing

Let us now consider runming times of present FD-TD
codes implemented on Cray supercomputers. Table 5 lists
running nimes tor modeling one monostatic RCS obser-

Table 5 Running Times ot Present FO-TD Codes tor 9 x
3 x 3\, T-5haped Target

Machine Running Time
VAX 11.780 (no tioating-point accelerator) 40 hours
Cray-2 isingle processor. using VAX Fortran 12 minutes
codel
Cray-2 (single processor. some code 2 minutes
optimization)
Cray Y-MP isingle processor. optimized code: 72 seconds
Cray Y-MP ieight processors) 9 seconcs

Cray-3 (sixteen processors) 3 seconds iest.)

1 1.533.milon unknown fhield components 661 time styps

21t Complete ime history ot the near neld 1s computed. trom zero-tield
1niial condinons to the sinusodal steady state

31 Complete bistatic RCS pattern s obtained :or d single lumination angle
$L 3 single trequency

4 Running imes are increased by 50-100% it anmpulsive excitation with
fast Fourier trans1orm 13 used 10 obtain the brstanic RCS pattern at 3 myl.
tphcity of frequencies within the spectrum of the impulsne llumination

vation of the 9 x 3 x 3\, T-shaped target discussed in Sec-
ton V-C. (Recall that this mode! involves an overall lattice
volume of 212.6 cubic wavelengths containing 1548 288
unknown field vector components time-stepped from zero-
field initial conditions to the sinusoidal steady state over
661 time steps.) Five computing systems are listed in the
table. The first1s the Digital Equipment VAX 11,780 without
floating-pornt accelerator. The second is a single processor
of the Cray-2, using the VAX Fortran code either directly or
after some optimization to take advantage of the vector-
ization and memory capabilities of the Cray-2. The third and
fourth are. respectively, single-processor and eight-pro-
cessor versions of the Cray Y-MP, using optimized Fortran.*
The fifth is the 16-processor Cray-3, scheduled for initial
usage in late 1989. (Running time for this case is estimated )

Table 5 reveals an extraordinary reduction of FD-TD run-
ning lime per monostatic RCS observation that hasoccurred

‘Multiprocessingon the Cray Y-MP can be trivially accomphished
for this inow 1 relatively small target by simultaneously placing eignt
indisidual processes, each representing one monoustatic obser.
vation angle. on the eight individudl processors ot the machine.
forthe much larg-r targets of current and tuture interest. thes pro-
cedure will not work because of memory contlicts between pro-
cessors Such targets wil require only a single FO-TD process to
be runonthe machine, with the computationatburden ior thisone
process shared by the available processors. Analogous statements
can be made for the 16 processor Cray-)
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during the pastiew vears Siple extrapolatton ot the Crav-
3 runming trme indicated 10 the table 1o 30-A, ddass three:
dimensional targets contaimng onthe order ot HK QU cubig
wavelengths indicates essential 1casibihty with no turther
improvements in Crav technology beyond ihe Crav-3 11
clear that succeeding generations ¢ such machines i the
1990> and bevond will permut routine engineering usiue of
FO-TD 10r modehing general electiomagnetic wave inter.
actions tincluding RCS) involving electaically larges struc-
tures.

8 The Connection Machine

An interesting prospect that has recently arisen 1y the
reduction of the order (N ) computational burden ot FD-TD
to order (N'Y. This possibility is a consequence ot the
appearance of the Connection Machine (M, which has
tens ot thousands of simple processors and associated bit-
wise memones arranged in a highly emcient manner tor
processor-10-processor communication. With the CM, a
single processor could be assigned to store and time-step
a single row of vector held components in a three-dimen-
sional FO-TD space lattice. For example, 1300 000 proces-
sors would be suriicient to store the six Cartesian com-
ponents of £ and H tor each of the 500 x 300 rows of acubic
lattice spanning 50 A, (assuming 10 cells A, resolution). FD-
TD time stepping would be pertormed via row operations
mapped onto the indwidual CM processors. These row
operations would be periormed concurrently. Thus ior a
tied number of time steps, the total running time would
be proportional to the time needed to perform a single row
operation, which in turn would be proportional to the num.
ber ot tield vector components in the row, or order (N 7).

For the 50-Aq cubic lattice noted above, this would imply
adimensional reduction of the computational burden irom
order 500’ 1to order (3001, a tremendous beneit. Asa result,
itis concervable that a suitably scaled CM could model one
monostatic RCS observation angle oi a 50-Ag three-dimen-
sionaltargetinonly aiew seconds, achieving efiective float-
ing-point rates on the order of 100 gigatlops (10 or more
complete Crav-3s). For this reason, FO-TD algorithm devel-
opment forthe CMis a promising areaof research1ordevel-
oping ultralarge numerical models of general electromag-
netic wave interactions, including RCS.

Vil Conciusios

This paper has presented 3 number of two- and three-
dimensional examples of FO-TD numerical modeling of
electromagnetic wave scailtering and penetration. The
objects modeled ranged in nature from simple geometric
shapes to extrernely complex aerospace and biological svs-
tems. In all cases studied to date where rignrous analytical,
code-to-code, or experimental validations were possible,
FD-TD predictive datafor near fields and RCSwere inexcel-
lent agreement with the benchmark data. With continuing
advances in FO-TD modeling theory for target features rel-
evant 1o the RCS problem, and with continuing advances
in vector- and concurrent-processing supercomputer tech-
nology. it ws hikely that FD-TD numernical mudel ng will
oLcupy an important place in RCS technoloyy ir tive 19905
and bevond asthe need 1or detailed models of three-dimen-
sional complex matenal struciures spanning 50 A, or more
becomes critical.
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THE FINITE-OIFFERENCE TIME-DOMAIN (FD-TD) METHOD FOR NUMERICAL MODEL ING
OF ELECTROMAGNETIC SCATTERING
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Department of &lectrical Engineering
and Computer Science
The Technclogical Institute
Northwestern University
Evanston, IL 60201

Abstract

This paper reviews recent applications of the
finite-difference time-domain (F0-TD) numerical modeling
approach for Maxwell's equations. FD-TD s very simple
in concept and execution. However, it is remarkadly
robust, provicging highly accurste modeling predictions
for a wide variety of electromagnetic wave interaction
problems. The objects modeled to date range from simple
2-D geometric shapes to extremely compiex 3-D aerospace
and biological systems. Rigorous analytical or experi-
mental validations are provided for the canonical
shapes, and it is shown that FD-TD predictive data for
near fields and radar cross section (RCS) are in excel-
lent agreement with the benchmark data. it is concluded
that, with continuing advances in FD-TO modeling theory
for target features relevant to the RCS problem, and
with continuing advances in vector- and concurrent-
processing supercomputer technology, it is likely that
FO-TC numerical modeling will occupy an important place
in RCS technology in the 1990's and beyond.

1. tion

Accurate numerical modeling of the radar cross
secticn (RCS) of complex electrically-large objects fs
g1fficult. Typical structures have shapes, apertures,
cavities, and material compositions or coatings which
produce near fields that cannot be resolved into finite
sets of modes or rays. Proper numerical modeling cf
such near fields requires sampling at sub-wavelength
resolution to avoid aliasing of magnitude and phase
information. The goal is to provide a self-consistent
model of the mutual coupling of all of the electrically
small regions (cells) comprising the st-ucture, even if
the structure spans tens of wavelengths 1in three
dimensions.

A candidste numerical modeling approach for this
purpose Js the finite-difference time-domain (FD-TD)
soluttion of Maxwell's curl equations. This approach is
analogous o existing finite-difference solutions of
fluid-flow problems encountered in computational aero-
dynamics {in that the numerical model is based upon a
direct solution of the governing partial differential
equation. Yet, FD-TD s a non-traditional approach to
numerical electromagnetic modeling, where frequency-

cmain approaches have dominated.

One of the goals of this paoer is to demonstrate
that recent advances 1in FD-TD modeling concepts and
software implementation, comdbined with advances in
computer technology, have expanded the scope, accuracy,
and speed of FO-T0 modeling to the point where it may be
the prefcrred choice for certain types of scattering
problems. With this in mind, this paper wil) succinctly
review the following FO-TD numerjca) .
tions dialing with electromgn:ncma:c]::tger?,,p,;]1c;
canonical two- and three-dimensional targets: Y

a. Circular dielectric / permeable cylinder
modeled

b. Meta) cube, broadside incidence

» conformally

Korada R. Umashankar, Senior Member, lEEE
Department of Electrical Engineering
and Computer Science
University of [1)inois at Chicago
P. 0. Box 4348
Chicago, IL 60680

¢. Three-dimensional T-shaped conducting target,
monostatic RCS pattern

d. Trihedral metal corner reflector, monostatic RCS
pattern

~- Bare metal case

-- Coated with a commercially available three-
layer radar absorbing material (RAM)

Each of these examples compares the FD-TD modeling
results with other data obtained via analysis,
alternative numerical procedures, or actual measure-
ments. Numerous other examples, including models of
non-canonical aerospace and biological structures of
great complexity, are available in the references.

2. ) Characteristics of FD-TD

As stated, FO-TD is a direct solution of Maxwell's
time-dependent curl equatfons. It employs no poten-
tials, Instead, 1t applies simple, second-order
accurate central-difference approximations (1) for the
space ang time derivatives of the electric and magnetic
fields girectly to the respective differential opera~
tors of the curl equations. This achieves a sampled-
data reduction of the continuous electromagnetic field
in a volume of space, over a period of time. Space and
time discretizations are selected to bound errors in
the sampling process, and to insure numerical stability
of the algorithm [2). Electric and magnetic field com=
ponents are finterleaved in space to permit a natural
satisfaction of tangential field continuity conditions
at media interfaces. Overall, FO-TD is & marching-in-
time procedure which simulates the continuous actual
waves by sampled-data numerical analogs propagating in
a data space stored in a computer., At each time step,
the system of equations to update the field components
is fully explicit, so that there is no need to set up
or solve & system of linear equations, and the required
computer storage and running time 1s proportional to
the electrical size of the volume modeled.

Fig. 1a illustrates the time-domain wave tracking
concept of the FD-TD method. A region of space within
the dashed lines 1s selected for field sampling in
space and time. A time s 0, it s assumed that all
fields within the .umerical sampling region are identi-
cally zero. An ‘acident plane wave is assumed to enter
the sampling region at this point. Propagation of the
incident wave 1s modeled by the commencement of time-
stepping, which is simply the implementation of the
finite~-difference analog of the cur) equations. Time-
stepping continues as the numerical analog of the
incident wave strikes the modeled target embedded with-
in the sampling region. A1l outgoing scattered wave
analogs i1deally propagate through the lattice trunca-
tion planes with negligible reflection to exit the
sampling region. Phenomena such as fnduction of sur-
face currents, scattering and multiple scattering,
penetration through apertures, and cavity excitation
are modeled time-step by time-step by the action of the
curl equations analog. Self-consistency of these

modeled phenomena is generally assured if their spatial
0018-9464/89/0700-3086301.00:Z 1989 IEEE
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Fig. 1. Bagic elerants of the FO-TD space lattice:
(a) time-domain wave tracking concept;
(b) 1attice unft ~211 in Cartesian coordinates (1].

and temporal variatiors are well resclved Dy the space
and time sampling procsss.

Time-stepping 1s coontinued unti) the desired late-
time puise response or sterdy/-state behavior {s achieved.
An important example of \he latter 13 the sinusoidal
steady state, wherein the !nc.dant wave s ausumed tc
have a sinusoida) dependence, and time:ytesying is con-
tinued until all fields in the sampling region exnfbit
sinusoidal repetition, This {15 a consequence of the
Timiting amplfitude principle (3). Extensive numerical
experimentation with FO-TD has shown that the number of
complete cycles of the fIncident wave required to be
time-stepped to achieve the sinugoids) steady state is
approximately equal to the Q factor of the structure or
phenomenon being modelad.

Fig. 1b illustrates the positions of the electric
and magnetic field components about a cubic lattice unit
cell (1). Note that each magnetic field vector compo-
nent 1s surcrounded by four circulating electric field

A105
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vector components, and vice versa. This arcangement
permits not only & centered-difference analog to the
space derivatives of the curl eguations, but also a
natural geometry for implementing the integral form of
Faraday's Law and Ampere’'s Law at the space cell level.
This integral representation permits a simple but
effective modeling of the physics of smoothly curved
target surfaces, as will be seen later.

Fig. 2 1llustrates how an arditrary three-
dimensional scatterer is embedded in an FD-TD space
Jattice comprised of the unit cells of Fig. 1b. Simply,
the Jdesired values of electrical permittivity and con-
ductivity ace assigned to each electric field component
of the lattice. Correspondingly, desired values of
magnetic permeability and ecuivaient loss are assigned
to each magnetic field component of the lattice. The
media parameters are interpreted by the FD-TD program
as local coefficients for the time-stepping aigorithm,
Specification of media properties in this component-by~
component manner results in 3 stepped-edge approxima-
tion of curved surfaces. Continuity of tangential
fields is assured at the interface of dissimilar media
with this procedure. There isno need for special field
matching at media interfaces. Stepped-edge approxima-
tion of curved surfaces has been found to be alequate
in the FO-TO modeling problems studied in the 1970's
and early 1980's, including wave interactions with bio-
logical . tissues (4], penetration into cavities (S5-7],
and electromagnetic pulse {interactions with complex
structures [8-10]. However, recent interest in wide
dynamic range models of scattering by curved targets has
prompted the development of surface-conforming FO-TD
approaches which eliminate staircasing. One such will
be summarized later in this paper.

Fig. 2. Arbitrary 3-0 scatterer embedded
in the FD-TD space lattice.

Fig. Ja fllustrates the division of the FD-T0 lat-
tice into total-field and scattered-field regions. This
division has been found to be very useful since ft
permits the efficient simulation of an fncident plane
wave in the total-field region with arbitrary angle of
incidence, polarization, time-domain waveform, and
duration (11, 12). Three additional important benefits
arise from this lattice division, as follows:

a. A large near-field computstional dynamic range i3
achieved since the scatterer of interest is embedded :n
the tota)-field regfon. Thus, low actual field levels
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Fig. 3. Zloning of the FD-TD space lattice:

{a) tota)-field and scattered-field regions (11, 12);
(b) near-to-far fi 14 integraticn surface located
fn the scattered-fieid region (12].

in shadow regions or within shielding enclosures are
computed directly without suffering sudDtraction noise
(as would be the case if scattered fields in such regions
were time-stepped via FD-TD, and then added to a cancel-
1ing incident fie'd to obtain the low total-field ievels.)

b. Embedding the scatterer in the total-field region
permits a natural satisfaction of tangential field con-
tinuity across media interfaces, as discussed earlier,
without having to compute the incident field at possibly
numerous points along a complex locus that is unique to
each scatterer. The zoning arrangement of Fig. 3a re-
quires computation of the incident field only along the
rectangulsr connecting surface between the total-field
and scattered-field regions, Tnig surface {s fixed,
f.e., independent of the shape or composition of the
enclosed scatterer being modeled.

¢. The provision of a well-defined scattered-field
regfion in the FD-TO lattice permits the near-to-far field
transformation depicted in Fig, 3b. The dashed virtual
surface shown here can be located along convenient lat-
tice planes in the scattered-field region of Fig. 3a,
Tangential scattered € and H fields computed via FO-TD
at this virtua) surface can then be weighted by the
free-space Green's function and then integrated (summed)
to provide the far-field response and RCS (full pistatic
response for thea assumed illumination angle) (12 -14],
The near-field integration surface has a fixed rectangu-
lar shape, and thus {s independent of the shape or com-
position of the enciosed scatterer being modeled.

Fig. 3a uses the term “lattice truncation” to des-
fgnate the outermost lattice planes in the scattered-
field region. The flelds at these planes canrnot be com-

puted using the centered-differencing approach bdecause
of the assumed absence of known field data at points
outside of the lattice truncation. These data are needed
to formtne central differences. Therefore, an auxiliary
lattice truncation condition is necessary. This condi-
tion must be consistent with Maxwell's equations in that
an outgoing scattered-wave numerical analog striking the
truncation must exit the lattice without appreciable
non-physical reflection, Just as if the lattice
truncation was invisible.

[t has been shown that the required lattice trunca-
tion condition is really a radiation condition in the
near field (15-17). A very successful second-order
accurate finite-difference approximation of the exact
radiation condition in Cartesian coordinates was intro-
duced in (11]. This approximation was subsequently used
in a variety of 2-D and 3-D FD-TD scattering codes (12 -
14), yielding excellent results for both near and far
fields. (For example, all FD-TD results in this paper
were obtained using this approximawe radiation condition.)
However, recent interest in wide dynami¢ range models of
scattering has prompted research in the construction of
even more &ccurate near-field radfation conditions,
inclugding fixed third-order accurate approximations
[18, 19), adaptive conditions [20), and predictor-
corrector conditions (21]. The goal here is to reduce
the numerical lattice background noise due to non-
physical reflections of wave analogs at the lattice
truncations by at least 20 dB relative to that of [11].

Scattering Prediction for Canonica) Targets

Analytical, code-to-code, and experimental valida-
tions have been obtained relative to FD-TD modeling of a
wide variety of 2-D and 3-0 structures [22). Both con-
vex and reentrant (cavity-type) shapes have been studied;
and structure materfal compositions have included perfect
conductors, homogeneous and inhomogeneous 10ssy dielec-
trics, and anfsotropi¢c dielectric and permeable media.
Selected past and new validations will be reviewed here.

3.

Circylar Dielectric / Permeable
11 \ 1ly Model

The interleaving of € and H field components in the
FO-TD lattice permits the construction of generalized
Faraday's Law and Ampere's Law contour paths which can
be adjusted to exactly conform with a smoothly curved
target surface. An example of this is shown in Fig. 4.
In this manner, slightly modified time-stepping expres-
stons for the field components at or adjacent to the
target surface are derived from the fintegra)l form of
Maxwell's equations. A1) other field components fn the

Fig. 4.
FD-TD mode'ing of a smoothly curved target, TE case

Faraday's Law contour paths for conformal
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Fig. 5. Comparison of conformal FD-TD model

and exact solution for TE illumination of a circular
dielectric/permeable cylinder: (a) surface electric
currents; (b) surface magnetic currents.

FD-TD lattice are time-stepped in the normal manner. In
effect, only the space cells immediately adjacent to the
target surface are deformed to conform with the surface.

The accuracy of the conformal FD-TD model {s illus-
trated in Fig. 5. Here, a moderate-resolution Cartesian
FO-T0 grid (having 1/20 dielectric-wavelength cell size)
is used to compute the surface electric and magnetic
current distributions induced on a k.a = 5 circular
dielectric/permeable cylinder by a TE-po?ar1zed incident
plane wave. Excellent agreement with the exact modal
solution is seen, Note also that the computer running
time for the conformal FD-TD model 1s essentially the
sare a5 for the old staircase FD-TD model since only a
faw finld components immediately adjacent to the target
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sﬁrface require a slightly modified time-stepping

“relation,

b. Metal Cube, Broadside Incidence £13]

Results are now shown for the FD-TD computed surface
electric current distribution on a metal cube subject to
plane-wave illumination at broadside incidence. The
current distribution is compared to that computed by a
standard frequency-domain, electric field integral equa-
tion (EFIE), triangular surface-patching, method of
moments (MoM) code. It is shown that a very high degree
of correspondence exists between the two sets of
predictive data.

The detailed surface current study invo1yes a me;a1
cube of electrical size k s = 2 , where s is the side
width of the cube. For tRe FD-TD model, each cube face
is spanned by 400 square cells (20 x 20), and the radia-
tion boundary 1s located at a uniform distance of 15
cells from the cube surface. For the MoM model, each
cube face is spanned by either 18 or 32 triangular
patches (to test its convergence). Fig. 6 graphs com-
parative results for thg "looping" surface current along
the E-plane locus ab'c'd. The FO~TD values agree with
the high-resolution MoM data to better than #2.5% (10.2
d8) in magnitude and +l1° in phase at all comparison

points.,

20
4
9
£
z wwmes FO-TD {400 Square Celts  *
~ 1ok Per Cube Face)
E ®  MOM - {18 Trigngulor.Patches Per
+ Cube Face, 162%162 Matriz)
- & MOM - (32 Trianguiar Patches Per
Cube Face, 208x 288 Matrix)
0.0 s —
[ [} e’ [}
(a)
(]
[+
3 -lootf
§
Jd
3 2001
MOM Phose Anomo!
300 - _""""<;"1
(d)
Fig. 6, Comparison of FO~TD and EFIE/MOM results for

the “looping” surface electric current along the
g~plane locus of a perfectly-conducting cube:
(a) magnitude; (b) phase (13].
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Monosiatic Rador Cross Section (dBsm)

@® FO-TOD Modeling Results
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&' (Look Angle , Degrees From Broodside )
Fig. 7. Experimenta) validation of FD-TD modeling predictions of monostatic RCS vs. azimuth

for the crossed-plate target at 9 GHz (main plate size = 3 x 9 )‘o' bisecting fin size = 3 x 3 Ao) [le, 22].

c. Three-Dimensional T-Shaped Conducting Target (14, 22]

We next consider the monoscatic RCS pattern of a T-
shaped conducting target cnnsisting of a 10x30x0.33 cm
rain plate and a 10x10:0.33 cm Disecting fin. Tne
illumination s a 9.0-GH: plare wave at (° elevation
angle and TE polarization ralative to the main plate.
Thus, the main plate spans 9.0 A . Note that look angle
azimuths (as dJdefined in Fig. between 90° and 180°
provide substantial corner reflector physics in addition
to the edge diffraction, corner diffraction, and other
effects found for an isolated flat plate.

For this target, the FD-TD model uses a uniform cell

32x96x1 cells and the bisecting fin by 32x32x1 cells.
The radiation boundary is located Qnly § cells from the
targat's maximum surface extensions, so that the overall
Tattica size is 48x112x48 cells, containing 1,548,288
unknowa field components (212.6 cubic wavelengths).
Starting with zero-fieid fnttfal conditions, 661 time
steps are used, equal to 31 cycles of the incident wave.

Fig. 7 compares the FD-TD predicted monostatic RCS
values at 32 key 100k angles with measurements performed
by SRI International. These look angles are selected to
define the major peaks and nulls of the monostatic RCS
pattern. The aareement {s excellent: in amplitude,
within 1 d8 over a 40-dl dynamic range; and in azimuth,

size of 0.3125 ¢m (A0/10.667). forming the main plete by within 1° in locating the pattern's peak- apd nulls.
s e FD-T0
Z 20 ® (S, ¥. Lee, =45 —— PEC
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Fig. 8.

Comparison of FD-TD and SOR results for tne monostatic RCS vs. elevation angle of a trihedra)
corner reflector (both uncoated and with commercial RAM coating):

(a) target geometry; Ib) comparative RCS.

A108 !




d. Irihedra) Cocner Reflectoc

We last consider the monostatic RCS pattern of a
conducting trihedral corner reflector, both uncoated and
with commercial radar absorbing material (RAM) coating.
The reflector consists of three, thin, 15 x 15 cm flat
plates mounted at mutual 90° angles, as shown in Fig. Ba.
The illumination is & 10.0-GHz plane wave at 45° azimuth
angle and 6-directed E field. Thus, the reflector spans
Sx 5x5A . For the coated case, the RAM is assumed
to be Emers8n & Cuming Type AN-73 (Q.9525 cm thick, con-
sisting of 3 gistinct lossy layers of equal thickness).

For this target, the F0-TO mode! uses a uniform cell
stze of 0.25 ¢m (1 _/12), spanning each plate by 60 x 60
cells. The latticd radiation boundary fs located only
12 cells from the target, so that the overall lattice
stze is 84 x 84 x 84 cells, containing 3,556,224 unknown
field components {343 cubic wavelengths). Starting with
zero-field initial conditions, 720 time steps are used,
equal to 30 cycles of the incident wave.

Fig. 3b compares the FD-TD computed monostatic RCS
pattern in the 8 plane (o fixed at 45°) with predictions
made by a shooting and bouncing ray (SBR) code developed
by Prof. S. W. Lee of the University of Illinois at
Urbana. Excellent agreement is seen for the uncoated
target case. For the RAM-coated case, both codes predict
substantial reduction of the RCS response. [t is seen
that the predicted RCS patterns for this case are in
gc.d qualitative agreement.

4. Potential for Modeling Uitra-Complex Targets

A graphic fllustration of the potential of FD-TD for
modeling s*ructures comprised of ultra-complex electro-
magnetic wave absorbing media is provided by the whole-
body dosimetry work reported by the University of uUtah
in (23). Directly explciting the adbility of FD-TD to
model media inhomogeneities down to the space-cell level,
and fully utilizing the speed and memory capabilities of
the Cray-2, highly realistic 3-0 tissue models of the
complete human body at a uniform space resolution in the
order of 1 cm have been constructed for the first time.
With capabilities of supercomputers expanding by at
least one order of magnitude in the next decade, it is
likely that FD-TD numerica: modeling will occupy an
important place in RCS technology in the 1990's and
beyond.
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Abstract

The Finite Diiference-Ti{me Domain (FD-TD) aumeri-
cal technique fo. solving Maxwell's equations is mappec
onto a massively parallel Single Instruction Multiple
Data (SIMD) architecture. A Connection Machine™ was
chosen over other contemporary SIMD machines as the
most promising candidate, The fundamental FD-TD algo-
ritha developed by Taflove ig decomposed irnto 1:sg
serial and parallel segments. Connection Machine
implementacion 13 discussed iIn g¢ecail including
processcr assignment, processor utilization, rtun
time, problem size, and future directions,

Introduction

FD-TD {s an explicit time

ence formulation >f Maxwell's
developed in the id-1980's by Allen Taflove [1], [t
has broad applicabiifty c¢o the s;tudy of elecrra~
magnetic scacrering by three dimensional objects
because the scatterers can be closed or open, conduct-
ing, dielectric, tnhomogeneoye, or anisotropic. The
algorithm has been validsted against experimental data
on objects that exhibit scattering physics at edges,
corners, and cavity penetration, Agreements to within
1 dB of experimental data have been reported for
scatterers that physically span 9 wavelengths and have
a bistatic scatter  dsnamic range of <0 dB [1]. Con-
sequently, FD-TD 18 certainly acong the moct robust
scacttering ;redictivs algorit.ms cthat .re currently
available., 1f a parallel computer algorithm could b.
developed that could handle larger mcatterers than
serial code and/or run fgster than seria’ codes, then
this new development could have broad sppiscadbliicy vo
the electromagnetics community.

stepping finite differ-
curl equacions that was

FD-TD Algoritho

FD-TD models the propagation of a plane wave in a
finice volune of space containing the electromagnetic
gcatterer, Figure 1. A cubic cell spatial lactice
grids the volune under study. Although simplistic,
attempts to generalize the gridding procedure to a non-
uniform, scatterer surface conformal one have not been
totally satisfactory because both cthe computational
dynamic range and algorithm run time degrade severely.
Alternative gridding techniques still remain .»n area
for continued research., An exploded view of a typical
FD-TD cell appears in Figure 2, the well known Yee
lattice. Note that the E and H field components
are computed on a half cell staggerec¢ grid. This
formulacion guarantees second order acguracy in the
difference equations that are being solved, Tuwo
computational regions a:e defined, a cotal fleld
tegion and a ecattered fileld region. The total field
region conmpiete.y enclogses the scatteres. In it, the
total fi{eld gets updated computationally 11 order to
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preserve a large computational 4ynamic range. Scattered
flelds are needed to ottain far field information. The
tvaveling wave incident fields get added at the futer-
face of rhe,e two -~ - 't--ional reglont respecting
causality.

A problem s.... ... 18 obtsined by time stepping the
difference ecuations. As time esolves the Incluent
wave travels through space exciting the scatterer.
Time steoping continues until steady r-zce 18 achieved
for 21] field componr.iis in the grid., At steady s.ate
all field ¢’ aponents aic sinusoirfi. 1n time with con-
verged magnitudes and converged 1el.tive phases,

Update eguations for the voiume' ric grid decompnse
irto four categories: discretized Mixwell's equations
for grid incterior points, Mur update equations for E
components at the interior points of the boundary
rectangles, interpolation and extrapo'ation equations
for the edges of the boundary rectangles, and equations
for the incicent fields. Mut update ecquazirug (2] are
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used to computationally teraminace the volumetric grid.
Basically, they are discrete versions of a one-way vave
equation and are designed to “ahsord” outgotng plane
vaves. 1n order to update 3 Mur boundary point to a
new time, all nearest neighbor spacfal values are
needed. Consequently, the Mur updaces do not apply

for fielcs along the edges of the volumetric grid.
£4ges are updated heiristically using an Laterpolation
and extrapolation scheme on nearest nefghbor data.

Tha Connection Machine

The Coaneccion Machine (CM) is a massively paral-
lel SIMD computer msnufactured by Thinking Machines
Corporation f{n Cambridge, Massachusetts. C(Ms are
hosted by serial computetrs that broadcast instruc-
tions to it, and the same instructlon ts executed by
each processor on data in Lts own nemery. A commer—
clally svallable CM=-2 contains a maxiaum of 65,536
pracessors, each having 65,536 bics of dedicated
memory (63,995 bits are user addressable). Instruc-
ticns are bit oriented giving the programmec the
unusual, buc extremely useful flexibtlity co match
word length to sulc desited dynaaic range or to match
fncerprocessor message lengths., Floating point
coprocessors are available, but at the present time
they support only 32 bic single precision acithmetic.
An elapsed time for a completa cycie of arithmecic
({.e., rvetrieve opevrands, perform the arithaetic
operatfon, and score the result) of LO,.uec {s
essily achievable, using n-n-optimized non-pipelined
code. Provided chat all 65k process~rs are product-
tvely coapucting, 1.6 gigaflops (65k/40 as) establishes
a lower limit on the machine capability. Typical
performance for algorithms developed at MRJ, Inc.
is equivalent to s serial macbine performance of
5 gigaflops, and peak perforuance rates equivalent
to 28 glgaflops on a serial machine have: been
demonscrated.

Genetral processor-to-processor communication is
available; however, for the alicrithm capabilities
incorporsced into the present wmodel, only nearest
neighbor processor communication {s needed., All
processors can get data from their nearest nei{ghbors
sioultaneocusly, For a 32 bit message the elapsed time
ranges from 30 4sec to 140 asec Jepending on algorithm
design {amplying that a net memory transfer cate of
70 e'gabics L9 possivle on a full machine,

On-line disk srorage (dacs vault) {s availabdle
up to 80 gigaby:-s for a 65k CM~-2, ''ut at pregent {¢
{s not coampatibi- with all hosts. Software will be
availablie in the nesr future to remedy the situacion.

The host computer plays an integral part in
execuling asgorithms. Not oanly does ic broadcas:
instructions to the CM, but 1t csn slso read data out,
pecform computations, and wrice data back to selecred
processors. This affords the user with flexibility co
use both serial and parallel computaciovnal capablifcty,
as nesded.

Programs can be wrivten on soall (8k) machines
and can be tun on larger machines without changing
the code. This {s ascomplished by using the good
coding practice of exploiting the operating sofczware
supplied machine coanscancs. The concept of virtual
processors is also supported. Each physical p-ocessor
can pstcicion Lts memory by factors of 2 and assign to
each racrticion a victusl processor 10. An 8k machine
can, therefore, sct like a 63k machine provided -hat
each processor needs only 1/8 of a processor’s physical
memory., Run time degrades with virtuslizacion.

Alll
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Mapping FD-TD onto the CM

FD-TD was mapped cato the CM with two gulding
principles: maximifze t“e size of the volumetric grid
that can be analyzed and min{aize cun time. Develop~
ment took place under the constraints that no on-lire
disk scorage was available and that all floating point
arichmetic would be single precision (32 bic) so thac
the floating polnt zoprocessors could be used. The
ficst consctraint arose because both developacnt Tisk
and clme were high when the programming was stacted.
Cata vaulc software was new, unprovean, and was avail-
able under an operating syscea that was less flexible
than the one desired. Floating pofnt arichmetic
using the coprocessors reduced run time by a factor of
10--gufficiently attraztive to warrant their use.
Contrary to what wight be expected, however, no
compromise in desired accuracy is {ncurted. Single
precision arithastic was demonstrated to support a
computational dynaals cange of 40 dB and is believed
to support a range of over A0 db. The real crade was
against volumetric grid size because using less than
30 vics would frce aemory for more grid poiacs.

Step 1

The FD-TD algorithm is exaained and broken {nts
its aigorithmic serial and paraliel computatisnal
steps. Stact by {dencifying the computatiuvnal
chronology at each time itep:

update {aclident fields

update interior H flelds

update {ncerior E flelds

update reccangular boundary edges
update rectangular boundary interiors
test for steady state

Eacli computational step above depends nn the result
of the previous one. Unless the basic algoricha {s
changed, these sceps are sequeniial on both seriai
and parallel computers. All spatial points can
theorecically be v 1aced si{multaneouslv {n each
computational ste;. In the second sten, for exaaple,
all three coamponents of H can be updated simulta-
neously as well.

Step 2

Idearify the role(s) to be played by each proc-
essor for each pacallel step. This scep is critical
for robusc narallel zode development, Performance
both {n run t{me and prodblem size could vary by orders
of magnitude among {mplementacf{ons. Returning to the
second computarional scep above, minimum execution
time would result (f each H fileld component and each
E fleld component at a grid cell were assigned to
individual processors. Such an assignment would greacly
sacrifice problem size since each rD-TD cull wou'd
require six processors. Instead, the decision was made
to assign each processor the role of updating the three
H components and the three E coaponents assizred to
each FD-TD cell, Figure 3. The trade here was in favor
of prodlem size at the expense of run cime. Total
storage requirements needed ts support computatisng for
each FD-TD cell sums to ',536 blets, significantly
less than the 63,995 usec addressable bits. Each
processor can, therefore, by virtualized by a faccor
of 139, the remalning storage being resecved “or stack
space.



2912

2z
6« .
"

010 === LN Y

Co 1nO8

LY £, ;

X
Figure 3. Fields Assigned to a CM Processor

Figure 4 summarizes the essential breskdown
betveen the serial and parallel processing steps.
Soma steps have been left out for clarity, i.e.,
update of incident fields, convergence testing, and
coaputation of peak and phase for scattered fields,
but the breskdown fn Figure &4 captures the philosophy.
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Figure 4.

Assesspent of Parallel Implementation

Each FD-TD cell needs only 1,536 blts for dara
storage. Creating virtual processors 1s clesrl: & good
ides; otherwise, the excess memory per processor would
not get used., Now consider processing for an {ndivi-
dusl plana, Let each plane be n cells by m cells,
Then (n-2)(2=-2) cells are interior ones, all getting
updated sis'taneously. Edge processors updste next.
Only four -rocessors are active independent ot grid
size. Clearly, this is poor utilization of the proc-
essors since only a small number are being used. The
true measure of 1ts {mpact on overall performance {s
the relative amount of time consumed compared to the
other grid update functions for aach plans. Table 1
provides the data needed. Edge updates require nearly
half as much time to compute a¢ the interior points do.
Updating the edges on cthe CM {natead of che host was s
poor choice, one that will be remedied in the next
version of the software. Face updstey are computed
using 2(n+w)-8 processors, on the order of the square
root of the number of available processors. Again
referring to Table 1, the ccnclusion {s drawn thst
s significanrt amount of time i{s requited to update the
face processors relative to the interior ones. This
does not imply that face updates should be performed
in the host, however, because the I/0 between the host
and the CM for the root of CM processors needed to
service the faces may be too expensive. Algorithas
for face update run time reductions are currently
being exawmined.

Table 1. Norwalized Slapsed Time for Major
Parallel Program Segments

PROGRAM SECMENT | NORMALIZED RUN TIME
interior update 1 unit

edge update L4696 units

face update 2402 unite

The three progran segments dimcussed above consti-
tute the core code that gets executed for esch plane in
the FD-TD grid. The execution time required to service

those segments that eaploy only a fraction of the nuzber
nf available processors, the edge and face updates, is
approximately 47 percent of the total time required 2o
service s plane, This suggests that the run tlime
improvement for the current algorithm is at best a
factor of 2. Run time improvements by factors of 10 or
sore will require a fundamental algorithm redesign.

Assessment cf Algnrithm Performance

Performance assessment will touch on the following
topics: problem size as a function of machine size, run
time 88 & function of machine 3ize, and comparison
between serial and parsllel codes. The most succinrct
aethod for conveying results is to express them in terms
of the nuaber of FD-TD cells that fit {nto the CM's
randon access memory (RAM). Otherwise, results would be
coupled to scatterer size and the desired solution accu-
racy, since for fixed scacterer size sclucion accuracy
i0 & function of the thickness of the scactered fleid
computational region., With the present code an 8k
processor (M can evaluate 38 planes of 62x126 cells
giving & totsl FD-TD volume of 296,856 cells. A 65k
processor CM can evaluate 38 planes of 254x254 cells for
s total of 2,451,608 FO-TD cells. The ssme code will
run on both machines at the seme wxecution Ctime of
0.045 geconds/time step/vircual plane. Totsl run time
per cime step is 38 cimes larger, 1.7 seconds/time step.
Run time 1s flat with the {ncresse in machine size
becsuse the architecture {s SIMD. Run time does change
as the number of virtual planes change because the
physical processors serially service the virzual proc-
essors that they represent. Benchmarks were tun to show
that reducing the number of virtual planes by a fsctor
of two also reduces the run time by a factor of two.

The largest scatterer studied and reported in the litera-
ture a8 far as we are sware is the 91 cross tee plate
reported by Taflove (1] using a Cray based code. It vas
embedded 1n a 258,048 cell lattice., By comparison the

CM code can evsluate s computationsl lattice 9.5 tizes
larger in volume on a full CM=2 {n RAM. Furthersore, the
CM code as currently written is somevhat more general
because the lactice cells can be rectangular parallel-
pipeds instead of just cubes. 1If the CM code is
rescructured in the ssme way, lattice size would doudle
by another factor of two {n volume and execution time

ver virtusl level would fall by roughly 10 percent.

Sunmary

The sdvant of massively paralliel processors 1is
still in 1ty Iinfancy; the CM, i{n particular, baeing
coamercially available for only two years snd being
based on technology thet 1s 10 years old. Already,
we are compiling data that suggests parsllel codas sre
capable of exceeding lattice sizes and executing faster
than even Cray based codes for latcice optimslly matched
to the CM's mepory. The applicadbility of psrsliel
processing to grid based techniques appesrs to have 2
bright future.
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Numerical Analysis and Validation of the Combined
Field Surface Integral Equations for
Electromagnetic Scattering by
Arbitrary Shaped Two-

Dimensional Anisotropic
Objects
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Abstract—The sumerical soludon of coupled integral equatioas for
arbitrary shaped two-dimensiosal bomogeneous ssisotropic scatterers i
presented. The theoretical sad (be sumerical spprosch utilized Is the
solution of the integral equstions i based o the combiaed fleld formu-
lstios, 104 Is specisiized (o both tramsverss edectric (TE) sad truosverse
megoetc (TM) polarizations. As opposed (0 the curreatly availsbie
methods 1or (be snisotropic scatterers, this approach iavolves imtegm.
tlon over «b: surfece of (he scatterer ip order to determine the uaknown
surfsce eleciric snd magestic current distributions. The solution is fa-
cllitated by developiag 8 sumerical spprosch employing the method of
moments. The various difficulties iavolved ie tbe course of 1be Bumerical
affort are pointed out, snd the wsys of overcoming them are discussed
in detall. The results obusined for two csaosics) snisotropic structures,
ssmely s circulsr cylinder sad s square cylinder, are givan sloag with
validations obtaised vis slternauve methods.

1. INTRODUCTION

IN RECENT YEARS, the solution of physical problems in-
volving anisotropic media has received a great deal of atten-
tion. In particular, volumetric approaches such as the finite-
difference time-domain (FD-TD) method [1]. (2] and the vol-
umetric integral equation method (3]-(5) have already been
addressed to solve scattering problems involving anisotropic
materials. Also considered was another volumetric method
based on the variational principle to solve problems involv-
ing anisotropic scatterers (6). These methods can treat mate-
rials characterized by arbitrary permittivity and permeabilicy
tensors, thus giving a great deal of freedom in the types of
media that can be analyzed by their use. However, the ap-
proaches and their numerical schemes (1)-[6) are completely
volume dependent, requiring volumetric models even for ho-
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mogeneous and isotropic cases. Further, their application to
electrically large objects has not yet been established. Another
approach to the solution of the scattering problem dealing with
snisotropic scatterers is based on the plane wave representation
of fields in the anisotropic medium [7]. The method discussed
in [7) consiss of using a superposition type integral to include
all possible wave amplitudes and phases, and is applied to0 the
circular cylinder excited at a normal incidence (7], and at sn
oblique incidence (8]. However, thus far this method has been
epplied only to the case of a circular cylindrical geometry.

In order to consider arbitrary shapes and computationally
manggeable sizes of the anisotropic scatterers, an alternative
approach to the solution is presented. The method incorporates
the surface boundary integrals instead of volume integrals,
and is applicable to any arbitrary shaped two-dimensional ho-
mogeneous anisotropic scatterers, which can have disconti-
nuities in their surface contour (9). It involves extension to
the formulation of the scattering problem for the isotropic
bodies by utilizing the electromagnetic potential theory, and
the subsequent derivation of the combined field sutface inte-
gral equations {10). However, the derivation of a complete
set of consisient potentials for the anisotropic case is much
more complicaied than the same procedure for the isotropic
medium. The detailed derivation of the combined field integral
equations is discussed 0 a separate paper cited earlier [9). The
complete theoretical development is omitted here, and only the
most relevant equations are stated to form the starting point
for the numerical solution. Due to the complicated nature of
these equations, it is practically useful to have a simple nu-
merical scheme for analyzing anisotropic structures, and yet
not compromising the accuracy of the numerical results.

The numerical results based on the surface formulation for
the transverse magnetic (TM) polarized flelds are presented
for two canonical anisotropic structures. In general, however,
these structures nced not be restricted to any particular shape
such as a smooth contour They can include surface disconti-
nuities in the form of sharp corner wedges. Also, in order to

0018-926X/89/1200-1573$01.00 © 1989 IEEE
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Fig. 1. Geometry of arusotropic scatterer with equivalent cusTent sources.

demonstrate the feasibility of applying the developed method
to compute the surface currents and the far fields, a relatively
large object with its largest electrical dimension of kos = 10
will be considered. In particular, for validating the combined
field formulation, the rudar cross section (RCS) computed for
a circular cylinder is compared 10 that available in Ue litera-
ture (7). Also, the near surface curremt disiributions and the
RCS of the anjsotropic square cylinder are validated against
the results obuined based on the FD-TD algorithm (2], (10).

1. INTeoraL EQuaTiONs sOR THE SurFacs FiLDS

Consider a two-dimensional anisotropic object for which
there is no variation in its surface comour along the 2 axis of
the coordinate system. It is Jocated in a frec-space medium
and is excited by an externally inciuent, TM polarized, field
with the time dependence of ¢ ~'“ where w is the frequency
of the excitation (see Fig. 1). Further, if the exciwation is such
that the 2 component of its propagation vector k' is zero,
then all scatiered field quantities are independent of the 2
coordinate variation. ln order to analyze the complete field
distribution due to the presence of the anisotropic object, the
equivalence principle (10), [11) can be invoked t0 obtain s
set of coupled (combined field) integral equations for the un-
known induced currents on the susrface of the object. The full
theoretical development Jeading to those integral equations is
presentec elsewhere (9], hence, only the key steps are repeatad
below. Referring 1o Fig. 1, the equations for the fields inter-
nal and external to the anisotropic object can be expressed
in terms of the appropriate vector and scalar potentials as is
done in [9)-(11]. If the space is separated into two regions,
with region 1 occupied by the isotropic (free-space) medium,
and the region 2 corresponding to the anisotropic scarterer,
respectively, then the total electric £, and the magnetic A
field expressions in the region 1 are given by

$-(VxFy
E’“ ﬂE’u +IUAU - —e—leo—l—

R, =R, +iuF, + 'E“;V('J-F.)-r © x4y (1b)
1 Biko

(1s)

ké Suzeouo (lc)
ki = kieiu (1d)

where k;, ¢, 4, are the propagation constamt. the relative
permittivity. and the relative permeability of the isotropic
medium. Similarly, the towl clectric £, and magnetic A;
fields in the region 2 are given by

)
':3=1M;z—2-%'(VXFz) (28)

A, =iuFy+ 1-"’,v<v Ga-Fay + B (9 x A @b
[

k3 = kiecg(urspyy + ul)) (2¢)

where the relative permittivity and permeability iensors for
the anisntropic medium are defined by

[Her Bry O

F= b By O (30
[0 0
[€&xs €&y O

i= ey ¢, 01]. (3b)
0 0 ..

It should be obvious from (1a), (1b) and (2a), 2h) that the
appropriste Lorentz-type gauge condition has “cen utilized
10 eliminate the magnetic scalar potential, sc that the field
expressions could be cast in terms of the magnetic and the
electric vector potentials only. The derivatior leading to the
Helmholz equations and the final integral representation of
the required components of the vector potentials A and F
for the anisotropic medium is quite intricate [9). A detailed
account of the procedure aken to obtain them is discussed in
[9). (15) and only their final forms are repested below:

Ar) = -#ow——“.l:——ﬁ; /c Ji(PHD Kk ,Rp)ds' (42)
(P = -Gotu“—-‘]———m/cM,(fl)ffg)(k.km)dll (4b)

()= -Oomz(—"/‘%‘.-—i.—;/cMy(")Hf,”(k,R,,)d:' (4¢)

Y = (Bashyy +H£,) (4d)
TV - v\
R,.-‘/(x ) -y (4¢)
Bz Hyy

where J;, M,, M, are the unknown eclectric and magnetic
current distributions along the contour C, H' is the Hankel
function of order zero and of first kind, and R, is the scaled
distance paramater (15}, (16) between the integration and the
observation points with C and dy’' representing the contour
of the scatterer and its differential element. The quantities =,
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and =, are the components of the suxiliary vector potential
function defined by

2s4i F (5

which permits independent differential equations for =; and
Z,. so that eventually solutions for Fx and F, can be deter-
mined (9]). It should be pointed out that in order to obtain
the integral solutions for 4., =,, =, it was necessary (0 de-
mand that the medium tensors possess antisymmetric proper-
ties. i.e., usy = —pyy for TM polarization, and ¢,, = —¢,,
for transverse electric (TE) polarization. The corresponding
superposition integrals for the external isotropic medium can
readily be obained from (4a)-(4d) and (S) by setting the diag-
onal elements of the medium tensors (those in (3a) and (3b))
equal and the off-diagonal ones to zero.

Finally, application of the boundary conditions on the tan-
gential components of the towl electric and magnetic fields
along C, yields the following set of two combined field (cou-
pled) integral equations for the surface currents:

-A X E’, = jw(A x 2)(Ag + Ag)

sa] i
-’.'X(VXF|+¢2 (Vsz)) (63)
éot) €0

-AxA =Ax {iw(F; +F3)

mv(v. (%uﬂpﬁi))

L

==}
. ((v:l.)_'_h .(vxl,))} (6b)
Hiuo Ko

which are valid for the TM polarized incident field (E, A).
The same equations alzo apply w0 the TE polarization fol-
lowing appropriste substitutions of symbols as is dictated by
the duality principle (11). in particular, allowing £ — A,
A — - E, and interchanging the roles of the permittivity
and permeability tensors results in the desired combined field
integral equations set for the TE polarization.

. NumanicaL SoLUTION of Ti@ INTEGRAL
EQUATIONS

The first step in the oumerical solution of (6s) and (6b)
based on the method of moments is the proper choice of the
testing and the expansion functions. This choice is usually
dictated by the complexity of the integrals and the scatterer
contour. For example, if the integrands contain derivatives
with respect to the observation coordinates along the tangen-
tial direction of the scatterer, then it is customary to use higher
order testing functions, such as the triangles, to replace those
derivatives by differences (12). The use of the simpler test-
ing functions, such as pulses, simplifies the testing scheme.
On the other hand, it complicates the integrands, because the
derivative operations due to the gradient, divergence, and the
curl will now be taken inside the integrals. However, this ap-
proach has been found to speed up the convergence rate of the
solution (13), and for this reason will be implemented here.

1578

The expansion scheme for the unknown surface electric and
magnetic currents is chosen to consist of the simplest possible
functions, such as pulses. The only remaining task is to de-
cide whether the pulses for each currert expansion ought to be
staggered or not. This, in fact, depends on the contour of the
scanterer, i.¢. . if the contour is smooth (continuous), then there
is no need to use the staggered distnbution. However, if the
contour includes surface discontinuities. such as the comers
and arbitrary bends, then it is appropriate to stagger the pulses
so as to enforce the continuity of the circumferential current,
and to avoid expanding the axial current at the bend where it
is singular {10). For the problem 2t hand, i.e.. for TM polar-
12ation, the axial electric current J,, and the circumferential
magnetic current M,, are expanded in a staggered manner as
shown in Fig. 2, because objects having both smooth and dis-
continuous comours can be considered for the solution using
the same computer algorithm. These same expansion pulses
are also employed as the testing functions for the two cou-
pled integral equations. Thus, the unknown surface currents

are expanded as
napN
TPy = Y oW in (T2)
Ael
aelN
MP) = 3 pY (ML (7o)
naNe|

where p/(?') and p¥(?') are the unit pulse functions which
can also serve as the testing functions r£(#) and (¥ (#) in the
reduction procedure of the integral operators in (62) and (6b)
to a matrix form. i.e..

Fig. 2. Segmented boundary contour.

maM

5 = Y phr) (8a)
mol
malM

My =% piit (8b)
meM~|
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where (82) and (8b) are used in taking the inner products with
(6a) and (6Y), respectively. The resulting system of the matrix
equations, following testing and expansion, turns out to be

41| IYS.I] [ V) ] [[E‘aml]
[ 28] il [(M:) (Him)
where the various elements of the system submatrices are de-
fined below.

1) The elements of the impedance matrix of the £ field
equation:

®

(25,) = ko

[ [meen + e
2%

VExxByy
(10a)

2) The elements of the admittance matrix of the £ field
equation:

i, = % / kih' - RH(k\R)ds’
Aa
1

ke

- "R $' R
+4‘- N m[(ﬁ )'*_‘I‘xy( m)]
)]
HP*Rm (10b)
Rm

3) The elements of the impedance matrix of the A field
equation:

2= 2 L (- Ry HO (k1 R)

70 ka . N
— A-R)y- $ - Ry
Koi A Vst ( ) Bry( m)]
(1)
H, kaRm) ds’. (10¢)
Rm

4) The elements of the admittance matrix of the /7 field
equation:

(Y= ‘2-' /A‘ [cos (Om - &)H{ (k1R)

20xm —x'y )
TR

20m = ¥
+cos O, cos &’ (l - -%—'Zl)
L 25in(®m + &Y xm = XN m -y’))
R2

HY (IqR)] ds’

- (sin &, sin &’ (l

€ . .
+ 2 (1 yy Sin @ sin &'+ p,, cos B, cos O’
VBexhyy Ja, '

+ ey $in (D = O NH (kR ) ds’

€Y / [( . oA
- Ryy Sin &, sin d
2Mp e b ”)3/2 Aa

Hg)(k.R,..)] ds’.
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+ pyx €08 O COS 0’)Hf,”(kaRm)

) , Z(Xm —X’)z
+ (p,, sin &m sin & (1 -
20m = ¥'7
+ bxx 05 Om cos &' (l - —%'Ta!‘—)
ByyBm
4 250 (@n + &)Xm = X)Im -y'))
Rn

’ Hg‘)(kakm)] ds'. (10d)

5) The column excitation matrix of the E field equation:

(Elp) =2 -E'(*m). (10e)

6) The column excitation matrix of the A field equation:

(Hin) = 2200 - AP (109
and where [J;,] and [M;,) are the unknown surface electric
and magnetic current column matrices along the tangential
directions Z and § of the contour C. In (10a)-(10d), the sub-
scripts m and n refer to the observation and the integration
points on the scatterer contour C, and in the above matrix
elements,

Rp=&n=XD On=-),

11a)
Hxx VEyy (
le=(xm‘x)j+(}’m"}’)j (11b)
HBxx byy
R=(xm—x"&+(m—-y)y (11c)

with R, R/, R being their respective magnitudes, and with
A, ', §, §' being the normal and the tangential unit vectors on
the contour at either the observation or the integration points
(see Fig. 1). These unit vectors are defined in the following
manner:

(7; A") = cos (®; )% + sin(®; ')y (11d)

(§; §') = —sin(®; )% + cos(P; ')y (1le)

where ® and ¢’ are the angles between the normals # and A’
and the x axis of the coordinate system.

It is evident from (10a)~(10d), that as a consequence of
letting the various differential operations to be performed on
the Green's function inside the integrals, results in the ap-
pearance of higher order Hankel functions, in particular Hg.”.
Nevertheless, the complications arising in the evaluation of
the system submatrices due to such an approach, are out-
weighted by the gain in the quicker convergence rate of the
solution [13]. Otherwise, the evaluation of those submatrices
is straightforward apart from the calculation of their singular
values, which should be obtained asymptotically. A detailed
mathematical analysis leading to the determination of the sin-
gular parts of the various integrals is presented in [15), and
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ouly the final results are summarized in the following. First,
foe the anisotropic medium they are given by

i

h= f H(keRa)ds' = A / HY (mri..)s) is
Qe (1]

(12a)

which is a weil-known integral and can be evaluated in nu-
merous ways [14]. The singular values of integrals involving
the first derivative of A are given by :

ka“xy / ) H(ll)(kakm) '
Iy = —— § Rp)——-"-ds' =0 (12b)
? 4‘\/#:.\'#” A..( " ) Rm

ok / v Ry HLKaR) 4o 1 o
= Wiy Jo T Rm 2

where all of the vectors have been defined previously in
(11a)-(11e), and it should also be noted that the values of
these integrals are same irrespective of whether the medium
is anisotropic or isotropic. The most complicated integrals
contain the second derivatives of Hf,”, nevertheless they can
be evaluated asymptotically to yield the following results:

I‘ =/A. (l - 2(xm?x_)) Hgl)(dem)dsl

Kxx iy

1

% ' 7@An)

Am(cos? &y —sin? $,) [(ﬁam)z .16 ]
Hyy Sinz om + ['33 7 Cosz ¢m
(12d)

o= 1 200m =y HO ' _
- #nym

’- / [2sin(d>,. + ) xm = X" (m —y')z]
6= 2
A RM

-H(kaRpm)ds'
=-W[w&m>z 16 ]
ity Sin By + prcost By L 96 T(BAM)
(126

where the the angle &,, is defined in [15] and related to the
real angle &, by

The remaining terms 8 and A,, are given by
Vixxbhyy

3 = A\ fityy $ind B + gy cos? &, (120)

(12h)

Secondly, the same equations (12a)-(12f) can be special-
2d for the sotropic medium by simply making appropriate
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substitution of variables, i.e.,
€zz — €l fhxx = phyy — Kl Hxy —0;% - 9. (12j)

Also, it should be pointed out that the value of /; — -/;
when the external isotropic medium is considered. This is a
direct consequence of the observation point approaching the
contour in the limit from the opposite direction for the exter-
nal medium, as opposed to the internal medium, considered
above. The remaining integrals are independent of this fact,
thus requiring no additional sign changes.

The matrix equations derived above ((9) and (10)) have
been programmed on the [BM 370 computer using Fortran
77, and the various quantities of interest, such as the near
surface current distributions and the far scattered fields, are
calculated in order to analyze the electromagnetic behavior of
two-dimensional anisotropic material objects.

IV. NuMERICAL RESULTS

In this section selected numerical results are presented re-
garding the computed near and far fields, as well as the CPU
time requjred to obtain them based on the solution of the ma-
trix equations (9). Two canonical cylindrical anisotropic ge-
ometries are considered, namely the ¢ircular and square cylin-
ders excited by an external TM polarized plane wave. Both the
near and the far fields are computed, and validated for each
of the two geometries. The radar cross section of a circular
anisotropic cylinder with ko@ = 7 /2, where a is the radius of
the cylinder, characterized by e;; =2, e = 1, and 4, =4
is computed based on the surface integral equation formulation
and is compared to the one obtained based on the plane wave
superposition integral representation of the fields inside the
anisotropic medium [7]. The two results are displayed in Fig.
3 and appear to be in an excellent agreement. Similarly, Fig.
4 illustrates the RCS computed for a circular cylinder of the
same size, but with the following anisotropic medium param-
eters: €;; =2, pxx =1, pyy =4, and p,y = —p,, = 2. For
both cases, the surface electric and magnetic currents were
calculated as well, but are reported elsewhere [15]. The num-
ber of unknowns for each of the surface currents was 60, such
that the total system matrix size is 120x 120 for the level of
agreement shown in Fig. 3.

The next case analyzed numerically is a square anisotropic
cylinder characterized by e,; = 1.5, p, = 1.5, Byy =2
whose electrical size is kos = 10, where s is the side length
of the square. Once again the RCS is computed based on
the solution of the combined field equations and is shown in
Fig. 5(a). These results are compared with those computed
via the FD-TD (10]. The agreement between the RCS pat-
terns calculated by the two methods is quite good except for
a small angular range in the shadow region in the interval of
200°-220°. The magnitudes of the surface electric and mag-
netic currents for this square cylinder are displayed in Figs.
5(b) and 5(c). The level of agreement for the currents is also
seen to be good except in the vicinity of the corners of the
scatterer where the resuits of the two methods differ. This
discrepancy deserves additional comments. Since the exact
nature of the field behavior at the corners of the anisotropic
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Fig. 3. Biswtic RCS of the circular saisotropic cylinder with only diagonal
terms.

object is not yet known, it is difficult to say with absolute
cerainty which of the two methods gives the cofrect result.
However, these corner regions are very small compared to the
wavelength and since the far scattered fields are not expected
to be greatly influenced by the currents over these localized
corner regions, the RCS patterns may be more appropriate
indicators of the agreement between the two methods. Also to
be noted is the fact that in the FD-TD algoritam the fields are
computed half a cell sway from the actual physical boundary
of the object, which may also be responsible for the discrep-
ancies between the results. Since the fields do not vary gready
half 8 cell away from the object in regions far from surface
discontinuities frum their values computed directly on the ob-
ject's surface, the agreement in the results calculsted via both
methods is expected to be good. However, in regions close 0
the bends the fields are expected to vary quite a bit between
their values half a cell away from the coatour and directly on
it. This could possibly explain the differences in the results
obtained via the two techniques in the vicinity of the corners
of the square. The next example considered is a square cylin-
der having higher permeability values of the medium given
by: € = 2, pey = 2, gy = 4, and kos = 5. The RCS
is computed and compared with that determined by FD-TD
(see Fig. 6(2)). The corresponding magnitudes of the surface
electric and magnetic currents for this scatterer are shown in
Figs. 6(b) and 6(c), respectively. It is worth noting that in
this case the results of both methods appear to predict similar
behavior of M, close to the bends in the contour, particu-
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Bistatic RCS of the circular misouopic cylinder with mutual per-
meability terms.

larly, both indicate the dip in the magnitude of M,, but not
10 the same extent. However, the discrepancy for the axial
electric currerd is still present in those regions. This behavior
may be anributed to the sparse sampling of the FD-TD algo-
rithm, which in this case consisted in fifty cells per side of
the square. It is believed that even further sgreement in the
results of the two methods could be achieved by increasing the
sampling rate of the FD-TD. It is dso worth mentioning that
since both FD-TD and surface integral equation approach are
based on methods of numerical analysis, it is not realistic 10
expect both of them to yield identical results. Additiona) ex-
amples for which both the surface currents and the RCS have
been computed are svailable in [15]. The two square cylinders
considered here are electrically large structures, especially the
first one (kos = 10) for which the number of current samples
is such that the system matrix is 592 x592. Nevertheless, the
numerical solution is feasible, because most of the time is con-
sumed by the system matrix inversion (which can be reduced
for symmetric objects) and not for matrix filling. It should be
pointed out that the symmetry of the structure has not been
incorporated in the present algorithm. If the symmetry is in-
corporated into the algorithm, then substantial reduction in the
CPU time for the maurix inversion can be schieved. Rurther
savings in the CPU time can also be obtained if the inversion
subroutine, based on the Gaussian elimination, is to perform
partial pivoting insiead of full pivoting.

In order 10 provide some idea of the time involved for the
computations to obtain the results for the square cylinder dis-

Fig. 4.
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played in Fig. S, the CPU time consumed by the algorithm was
recorded. The actual time for all of the results to be calculated
was found to be 1770.10 s on the [BM-370 mainframe. This
indicates that consideration of electrically large anisotropic
scatterers is quite feasible for the numerical solution.

V. SUMMARY

In this paper, a numerical solution of the combined field
surface integral equations for the case of arbitrary shaped two-
dimensional anisotropic scatterers has been presented. The
computed results for the surface fields and the far scattered
fields are validated by the currently available alternative meth-
ods, such as the FD-TD (2) and that of plane wave represen-
tation of fields in the anisotropic medium [7]. The discussion
included a deuwiled account of the various aspects involved
in the numerical solution, including the results of the singu-
larity analysis for the integrals containing different orders of
the Hankel functions for both anisotropic and isotropic me-
dia. The computer algorithm developed is applicable both for
smooth contours and those with sharp edges.
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ABSTRACT

This paper succinclly reviews the background and formulation of the finite-
differance time-dom.ain (FO-TD) method for numerical modeling of electromagnetic wave
ntigractions with artitrary structures. Selected 3-O results are given showing compar-
isons with both measured dala and other numerical modeling approaches. An assessment ,
mada of the present horizon of FD-TD modeling capabilitios, and possible future directions.

1. INTRODUCTION

Accurale numerical modeling of full-vector glectromagnetic (EM) wave inter-
actions with arbitrary structures is difficult. Typical structures of engineering interest
have shapes, apertures, cavities, and material composilions that produce near fields that
cannot be resolved into finitg sets of modes or rays. Proper numerical modeling of such
near fields requires sampling at sub-wavelength (sub-l) resolution to avoid alizsing of
magnitude and pr.ase information. The goal is to provide a seif-consistent mode! of the
Mutual coupling of the elaectrically-small cells comprising the structure, even if the
structure spans tans of A in 3-0.

This paper reviews the formulation and applications of a candidate numerical
modsling approach for this purpose: the finite-ditference time-domain (FD.TC) solution
of Maxwaell's curl equations. FD-TD is very simple in concapt and execution. However. it
is remarkably robus!. providing highly accurale mo.eiing oredictions for a wide varety of
EM wave interaction problems. FD-TD is analogous to existing finite-ditferance solutions
ol scalar wave propagation and fluid flow problems in that the numarical model is based
upon a direct, tima-domain solution of the govarning partial differential equation. Yet. FO-
TO is a nontraditional approach to numerical sleciromagnaetics for engineering applications
where frequency-domain integral equation approaches have dominated for 25 years.

One of the goals of this paper is to demonsirate that recent advances in FO-TD
modeling concepls ang software implementalion, combined with advances in computers,
have expanded the scope, accuracy, and speed of FD-TD modaling 10 the point where it may
be the besi choice for large EM wave interaction problems. With this in mird, this paper
will succinclly review selected 2-D and 3-D0 FO-TD modeling validations and examples:

1. EM wave penetration and coupling
a. Narrow slot in a thick screen (2-D, TE-polarized case)
b. Wires in free space and in a metal cavity (2-0 and 3-D)

Electromagnetics 10:105-126, 1990 108
Copyright © 1990 by Hemisphere Publishing Corporstion
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Time-Domain Synthesis of Broad-Band Absorptive
Coatings for Two-Dimensional Conducting
Targets

MARK A. STRICKEL. memsen, teee. aND ALLEN TAFLOVE. reLLow, 1e€E

Absmract— A mew Lime-domain syuthesis approach is istreduced for
read-bund sbeorptive contiags suitsbie (or rader crom secties (RCS)
manegoment. The new aigerithe lnveives & Snite-differyace time-domein
(FD-TD) ferwaré-scotiering represomtion of Meawell's corl oqmations
is o somerical fosdhack loep with the Levesberg-Marquardt (L-M)
noulivets optimizsiion reuting. L-M is uted te sdjust many grometric
and comstitotive parameters that chorneteriss o target, while FD-TD b
ssed (o obisin the bresd-tnad biststic RCS responss for cach targt
sdjestment. A recursive improvement process is estsblished 10 minimize
(he bread-toad ACS response over s selecied renge of bistiatic sagles
sslag the sveilabie snginsering degress of fresdom. The selution is vaiid
over (00 polestislly broed bundwidih (frequency docads or mere) af the
ilamiosting pulst weed ie the FD-TD computationsl model. Examples of
this @ethed sre provided ia the ares of ACS mansgement for cononical
two-dimensional conducting tarpats.

1. InTRODUCTION

YNTHESIS PROBLEMS are of fundamental importance

in slectrical engineering. In electromagnetics, essentially
all the existing synthesis approaches utilize frequency-domain
forward dats, i.e., sinusoidal steady-state values for radiated
or scantered flelds, reflection coefficients. etc. Synthesis over 3
broad frequency band, therefore, requires calculstions spread
over the desired band and over the range of the engineering
degrees of freedom in the design. In the area of radar cross
section (RCS) management, this synthesis approach has driven
research in reducing computer resource burdens in-.ived in
executing frequercy-domain forward-scatiering codes.

This paper introduces a new time-domain synthesis sp-
proach for broad-band absorptive costings suitable for RCS
mansgement. The new algorithm involves a finite-difference
time-domain (FD-TD) forward-scattering represemtation of
Maxwell’s curl equations (1] in a numerical feedback loop
with the Levenberg-Marquardt (L-M) nonlinear optimization
routine (2). 1.-M is used to adjust many geometric and con-
stitutive parameters that cheractsrize a target, while FD-TD
is used 10 obtain the broad-band bistatic RCS response for
each trget adjustment. A recursive improvement process is
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established 10 minimize the broad-band RCS response over a
sclected range of bistatic angles using the available engineer-
ing degrees of freedom. The solution is valid over the po-
tentially broad bandwidth (frequency decade or more) of the
illuminating pulse used in the FD-TD computational model.

Because the FD-TD forward element is a direct solution
of Maxwell's curl equations. it models in a straightforward
manner a wide variety of electromagnetic wave scattering and
interaction phenomena. The accuracy of FD-TD modeling
is equivalenk to that of the widely used. frequency-domain
method of moments (MM). with essentially equivalent results
of the two methods for arbitrary conducting and penetrable
targets (the latter having media properties as complex as di-
agonalizable tensors) (1], {3), (4). However. the explicit na-
ture 1 the FD-TD algorithm leads 1o computer storage and
run..ng time burdens that are dimensionally low compared to
those of MM for targets that are cither electrically large or
have a complex. inhomogeneous material composition. The
accuracy and efficiency of FD-TD. combined with its time-
domain formulation which allows direct modeling of broad-
band phenomena. makes FD-TD the algorithm of choice for
the forward-scattering element of the new time-domain syn-
thesis approach.

The L-M algorithm [2]. selected for use in the feedback
path. is also considered 1o be robust and one of the best op-
timization methods for nonlinear least-squares problems. A
good example of the utility of L-M optimization as opposed
to possible alternatives such as the quasi-Newton method and
the conjugate gradiem method is given in [5]. which reports
the synthesis of near-field patterns using linear arrays of point
dipoles. It is shown in (5] that L-M is the most effective syn-
thesis algorithm in this application,

This paper describes the new FD-TD/L-M synthesis
method. and provides examples of its application o synthe-
size absorptive coatings for brosd-band RCS management of
canonical two-dimensional (2-D) conducting targets. The new
method is used to synthesize both isotropic and anisotropic
coatings for three target shapes: 1) the infinite. flat metal
plate illuminated at normal incidence: 2) the infinite right-
angle metal wedge: and 3) the infinitely long circle-capped
(rounded) metal sirip of finite thickness. In each example. the
synthesized bsorptive coating is assumed to be nondisper-
sive. Howe - it appears possible to incorporate canonical
dispersions imo the FD-TD element. This will be a subject of
later work.

0018-926X/90/0700-1084%01.00 © 1990 IEEE
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1. FD-TD/L-M ALGORITHM

In this section, we discuss the application of the FD-TD/L-
M algorithm to the synthesis of broad-band absorptive coatings
for RCS management. For simplicity. we shall consider a tar-
get of fixed shape and size. although the synthesis algorithm
1S 50 general that optimization of target geometrical features
can be incorporated in a straightforward manner.

We first ooserve that the properties of a target's coating
can be described by a set of key parameters. These parameters
might include the number of layers in the coating, the thickness
of each layer, the components of the constitutive tensors of
each layer (electrical permittivity and conductivity. as well as
magnetic permeability and loss), and finally the variation of
the previous properties with position along the target surface.
It is clear that the number N of key parameters can be large:
effectively. there are N degrees of freedom. For purposes of
this synthesis approach. it is very useful to consider the state of
the overall coating as a single point in an N-dimensional space
defined by a coordinate value for each degree of freedom. The
optimum coating can be synthesized by efficiently searching
N.space for the set of points (hopefully not the empty set) that
satisfies the engineering criteria.

The FD-TD/L-M synthesis algorithm begins with an initial
guess for the target coating properties, 1.¢., a starung point
in the N-space discussed above, The FD-TD element com-
putes scattered field-versus-time waveforms at the desired set
of physical locations in the near or far ficld. (The latter are
calculated using a time-domain analog of the near-to-far-field
:ransformation discussed in {6].) FD-TD computations of the
scattered transient responses at the locations of interest are
compared to the desired field waveforms at these poi- s, For
comparison points in the backscatter direction. RCS manage-
ment goals may dictate that the desired scattered field wave-
form is simply zero. and the mere presence of a calculated
transient scattered response at these points comprises an error
signal. More generally, the-‘FD-TD calculated scattered pulse
responses at all observation points of inerest are compared
1o the desired time profiles. and a weighted, composite error
signal is generated, which is sent 1o the L-M nonlinear opti-
mization feedback clement. as shown in Fig. 1(a). The L-M
routine adjusts the position of the operating point in the coat-
ing N-space in a direction to reduce the error signal in the
least-squares sense. With the calculation process in the time
domain, causality can be exploited in the optimization pro-
cess to modify only the coating properties causally connected
to the physical observation points, thereby windowing desired
target features.

With the version of the L-M algorithm used here. the M-
space search per iteration through the FD-TD/feedback loop
is conducted in two phases. In Phase 1, the search direction
is established by calculating partial derivatives of the error
signal with respect to cach of the N dimensions (degrees of
freedom). if central differences are used. two forward FD-TD
runs are required per degree of freedom for this purpose, so
that this phase entails 2N FD-TD runs. In Phase 2, a line
search is conducted along the calculated search direction to
determine the distance that the operating point moves in the
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Fig. 1. FD-TD/feedback method for electromagnetic absorber synthesis. ta)
Block diagram. (b) Energy spectral density of the one-half cycle, 3-GHz
sinusoidal pulse used as the illuminating waveform.

N-space. Numerical experiments indicate that approximately
ten additional forward FD-TD runs are needed for this phase.
At this juncture in the algorithm, the new operating point in
the coating N-space has been established.

This process is repeated until the error signal drops to some
minimum value which shows no further reduction upon addi-
tional iterations. Effectively, the procedure traces out a path
in the coating N-space from the initial guess or starting point
to the final coating state. The recursive imprcvement process
established for the coating in this manner leads at worst to
a local minimization of the error. that is, local in the sense
of the coating N-space. Without much doubt, there may exist
a number of such local minima, and possibly even a global
error minimum for the entirety of the N-space. A challenging
aspect of the nonlincar optimization process is to develop effi-
cient means to perform a global search of the coating N-space.
One possible approach is the use of advanced multiprocessing
computers such as the Connection Machine to implement con-
currently a large number of search trajectories in the coating
N-space, seeded by a like number of starting points. Research
in this area is commencing.

With the L-M optimization algorithm providing an efficient
means of searching through the coating N-space. it becomes
possible to cither: 1) add additional degrees of freedom. i.c.,
dimensions to the N-space, to permit the target shape (o be
optimized as well; or 2) to define forbidden zones in the N-
space through which search trajectories cannot pass due to
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constraints imposed by manufacturing costs. material avail-
ability, or any other factors. Thus, the optimization for elec-
tromagnetic propertics can be treated as a subset of a more
general optimization wherein systems-type considerations can

be imposed.
[1. SynTuesis ExamrLE IN ONE DiMeNnsiON

This section provides a simple example of the use of the
FD-TD/L-M method: synthesis of a broad-band, two-layer ab~
sorbing coating to mitigate reflection of a normally incident
plane wave by an infinite, planar, perfectly conducting sheet.
Fot this (and subsequent) examples, it is desired merely to
indicate the potential of this approach without actually com-
pleting an engineering design for scanering mitigation, so the
number of design degrees of freedom is kept small. Further,
artificial constraints are imposed upon the constitutive param-
eters of the absorber to avoid undue realism. For this example,
the following constraints are imposed:

1) Overall absorber thickness— 10 mm
2) Number of absorber layers—two
3) Properties of inner layer (next to conducting sheet)
thickness—7.5 mm
free-space permittivity
finite electric and magnetic conductivities, o, and om
electrical conductivity >qual to that of the outer layer
4) Properties of outer layer
thickness—2.5 mm
free-space permittivity and permeability
only electric loss is present. and this is equal to that
of the inner layer.

Thus, it is seen that the coating N-space has a dimensionality
of only three, with the inner/outer layer clectric loss, inper-
layer magnetic permeability, and inner-lsyer magnetic loss the
only design degrees of freedom available.

The absorber-coated conducting sheet is synthesized using
a 50-cell, one-dimensional FD-TD grid having a uniform cell
size of 0.5 mm. The broad-band excitation is a one-half cy-
cle 3-GHz sinusoidal pulse having the energy spectral density
shown in Fig. 1(b). Note that the exciting pulse has substantial
energy content from dc to over 5 GHz, and that minimization
of the reflected time-domain waveform in the least-squares
sense amounts 10 a very brosd-band mitigation of scattering.

To begin the synthesis process, the point (0, = 0.5 S/m,
ur = 2.0, om = 0503 Vm) in the coating three-space is se-
lected arbitrarily as an initial guess, where no is the character-
istic impedance of free space. While tracing out a trajectory
in the coating three-space from this starting point, the FD-
TD/feedback algorithm is constrained to keep the electric and
magnetic conductivity values nonnegative and the permeabil-
ity greater than or equal to one. For this example, causality
is not exploited in the optimization and the entirety of the
reflected pulse is considered as the error signal to be mini-
mized in the least-squares sense. It is found that six-passes
through the FD-TD/feedback system are needed for conver-
gence, with each pass requiring 16 FD-TD runs (each 350
time steps). At the conclusion of this process, which involves
a total CPU time of 2 min on the VAX 11/780, the operat-
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Fig. 2. Symhesis example in one dimension. (a) Final coating sste after
convergence of the synthesis algorithm. (b) Reflection coefficient magnitude
versus frequency for the syathesized coating over metal.

ing point in the coating three-space has shifted 10 (0.4632.
4.497, 1.33693). and the error signal (energy in the reflected
time-domain waveform) has been reduced by a factor of 134:1
from that of the initial guess for the coating.

Fig. 2(a) shows the final coating state after convergence
of the synthesis algorithm. (For notational simplicity in this
and later examples, the listed value of magnetic conductivity
is the actual valuc divided by n3.) Validation of the effec-
tiveness of this procedure is provided in Fig. 2(b). which
plots as a function of frequency the usual sinusoidal-wave re-
flection coefficient for the costed conducting sheet, calculated
using standard impedance-transformation formulae applied 1o
the symhesized coating. Over the frequency range 0-6 GHz.
this reflection coefficient is less than 0.05 (~26 dB), achieving
a minimum value of 0.0014 (-57 dB) at 2.2 GHz.

IV. SynThests of Assorrmive COATINGS FOR THE INFINITE
METAL WEDGE

In this section, the FD-TD/feedback method is used to .
synthesize absorbing coatings for an important canonical '
two-dimensional structure. the infinite, perfectly conducting,
right-angle wedge subject 10 transverse magnetic (TM) plane-
wave illumination. As in the previous example. constraints
are placed upon the symthesis to indicate the potential of the
approach without completing an actual engincering design.

Fig. 3 shows the constraints imposed upon the problem to
meet the above goals. The wedge, shown as the shaded region
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Fig. 3. Assumed geometry for the synthesis of absorbing coatings on an
infinite. perfectly conducting. nght-angle wedge.

extending an infinite distance along the +x and +y axes. is
assumed coated with two distinct, homogeneous absorbers:
a S-mm thick “left”” coat along the +y-axis: and a 5-mm
thick “‘bottom™ coat along the +x-axis. The two costs are
in contact at the wedge vertex and form a3 miter joint. Two
different coating pairs are synthesized. In Case 1, the left and
bottom coats are isotropic; while in Case 2, the left and bottom
coats have diagonal tensor anisotropy for the magnetic loss.
For both cases, the relative permittivity and permeability of
the coats is assumed fixed at 1.0 (a scalar value); the left-coat
electrical conductivity is fixed at 1.25 S/m (scalar); and the
bottom-coat electrical corductivity is fixed at 0.5 S/m (scalar).
Thus. for Case 1, the coaing N-space has a dimensionality
of only two (the left- and bottom-coat scalar magnetic losses
being the only degrees of yv=2dom); while for Case 2, the
coating N-space has four dimensions (the two diagonal tznsoc
components of magnetic loss for each of the two coats).

The coated wedge is synthesized using a 200 x 30( «-§
two-dimensional FD-TD grid having a uniform cell size of
0.5 mm. The broad-band excitation is again a one-half cycl¢.
3-GHz sinusoidal pulse, TM poiarized, and having an incideny
wavevector oriemied at 30° with respect 10 the +x-axis. Time
waveforms of the scattered electric near field are observed at
eight points located S mum from the coated wedge, denoted by
*+"* signs in Fig. 3. By properly selecting the FD-TD grid
and wedge size, as well as the number of time steps. the ob-
scrvation points are causally isolated from diffraction effects
at the rear of the wedge for a length of time sufficient to per-
mit the observed fizlds to decay as they would for an infinite
wedge. (In effect, the time-domain formulation of the forward-
scattering element is cxploited to permit effective simulation
of an infinite wedge by time-gating spurious diffraction effects
due to finite actual wedge size {7].) The error signal input to
the optimizer consists of the square of the sum of the abso-
lute values of the FD-TD computed time samples at the eight
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F To begin the synthe ;& Xuxess for the isotropic coatings of
Case 1, the point (om,, = 1.25, om, = 5.0) in the coating
two-space is selected arbitrarily as the initial guess. It is found
that six passes through the FD-TD/feedback system are needed
for convergence. with each pass requiring 14 FD-TD runs
(cach 350 time steps). At the conclusion of this process, which
involves a total CPU time of 2 min on a single processor of
the Cray X-MP, the operating point in the coating two-space
has shifted io0 (1.50, 2.266), and the error signal has becn
reduced by a factor of 2.9: 1 from that of the initial guess for
the coating.

Fig. 4(a) shows the final coating